Classes of Nutrients Required

- Water
- Carbohydrates
- Lipids (Fats)
- Protein
- Minerals
- Vitamins
Water

- Cheapest, most abundant, most critical nutrient
- ~70% of wt of newborn; 45-60% at maturity

Functions

Water (cont.)

- Sources for animal
 - Drinking water
 - Water in feed
 - Metabolic water
Water (cont.)

- Dry matter *vs.* as-fed
 - Water content varies w/ ruminant & horse feeds
 - Swine and poultry usually “as-fed”
 - When using tables, **be aware of DM *vs.* as-fed**

- Determination of DM content

Carbohydrates

- Account for
 - Main source of energy for animals
 - Primarily starches and cellulose
 - Also
 - Cell walls:
 - Cell contents:
 - Glucose
Carbohydrates

- Sugars/starches readily digested
- Fibrous feeds less well digested
- No requirement for CHO per se
 - Energy values expressed by several methods:

Lipids (Fat)

- Account for
- Insoluble in H₂O; soluble in organic solvents
- Because oil is valuable it is extracted from many oil seeds
 - Soybeans
 - Cottonseeds
 - Flax seeds (linseed)
 - Peanuts
Lipids (Fat) cont.

- Units of measure:
 -
 -
 -
- 2.25X more energy than CHO or protein
 -
 -

Lipids (Fat) cont.

- Functions
 -
 -
 -
 - Linoleic acid (C_{18:2 \omega-6})
 - Linolenic (C_{18:3 \omega-3})
 - Need only ~ 1 tablespoon of oil per day
 -
 -
 -

EFA – Pg. 25
Kellems
Protein

Found in greatest amount of any nutrient, except water, in all living organisms
- Made up of amino acids
- Need a continuous supply in diet
- Most N in feeds is in protein
 - Why “crude” protein?

Protein (cont.)

- Protein terminology
 - True protein -
 - Nonprotein nitrogen (NPN) -
 - Made up of AA linked by peptide bonds
Protein (cont.)

- Animals require AA...not protein
 - Essential AA (also called *indispensable* AA)
 - Phenylalanine (PHE)
 - Valine (VAL)
 - Threonine (THR)
 - Tryptophan (TRY)
 - Isoleucine (ILE)
 - Methionine (MET)
 - Histidine (HIS)
 - Arginine (ARG)
 - Leucine (LEU)
 - Lysine (LYS)

Protein (cont.)

- Nonessential AA (also called *dispensable*)
 - Alanine (ALA)
 - Aspartic Acid (ASP)
 - Asparagine (ASN)
 - Cysteine (CYS)
 - Cystine (CYS-CYS)
 - Glutamic Acid (GLU)
 - Glutamine (GLN)
 - Glycine (GLY)
 - Proline (PRO)
 - Hydroxyproline (OH-PRO)
 - Serine (SER)
 - Tyrosine (TYR)
Protein (cont.)

- Requirements
 - Greater for young, rapid growing (as % of diet)
 - Monogastric animals require AA, not protein
 - Balance ruminant diets for protein
 - Exceptions...

Minerals

- Ash = total mineral content of plant or animal
- Minerals ~3-5% of animal body
 - Ca = approx. ½ of mineral content
 - P = approx. ¼
 - All other minerals = approx. ¼
Minerals (cont.)

Classification
- Macrominerals (major)
 - Ca, P, Na, Cl, Mg, K, S
 - Units of measure usually expressed in gm or as a % of diet or feed
- Microminerals (usually called “trace minerals”)
 - Co, Cu, F, I, Fe, Mn, Mo, Se, Zn
 - F and Se are toxic in excess amounts
 - Units of measure usually expressed in mg or μg or as a % of diet or feed

Minerals (cont.)

General functions
- Skeletal formation/maintenance
- Protein synthesis
- Oxygen transport
- Fluid balance & acid-base balance
- Cofactors in enzyme systems
Minerals (cont.)

- Some specific functions/Signs of deficiency
 - Ca
 - Bone and teeth formation; muscle contraction; blood clotting
 - Def: Rickets (young), osteoporosis (adults); tetany (intermittent muscle contractions); milk fever in dairy cattle (paturient paresis)
 - P
 - Bone and teeth formation; high-energy phosphate bonds
 - Def: Rickets, chewing on wood or boards (depraved appetite), eating soil (pica)

Minerals (cont.)

- Some specific functions/Signs of deficiency
 - Mg
 - Bone formation; enzyme cofactor for ATP formation and utilization
 - Def: hyperirritability and convulsions; loss of equilibrium; tetany
 - Fe
 - Cellular respiration (hemoglobin; myoglobin; cytochromes
 - Def: anemia
Minerals (cont.)

- Some specific functions/Signs of deficiency
 - Zn
 - Cofactor for enzyme systems
 - Def: Parakeratosis in swine (rough, thickened skin); poor hair development; slipping of wool
 - Co
 - Component of vitamin B\textsubscript{12} (also called cobalamin)
 - Def: Macrocytic anemia; Ruminants: severely reduced appetite and growth leading to death
 - I
 - Thyroxine formation (regulation of BMR)
 - Def: Goiter

Iodine

Simple goiter – enlarged thyroid gland due to I deficiency
Minerals (cont.)

- Some specific functions/Signs of deficiency
 - Se
 - Component of glutathione peroxidase which protects against cellular membrane damage; functions with vitamin E
 - Def: easily ruptured blood cells; nutritional muscular dystrophy (white muscle disease)
 - Excess: blind staggers; sloughing of hooves, tails
 - F
 - Bone formation; traces protects against teeth decay
 - Excess: defects in enamel; bone deformities

Minerals (cont.)

- Salt
 - Always should be available either free choice or incorporated into diet
 - Ruminants and horses - 0.5 to 1% of diet
 - Pigs and poultry - 0.25 to 0.5% of diet
 - Trace mineralized salt often used
 - TMS = 97% NaCl + Co, Cu, Fe, I, Mn, Zn & sometimes other minerals
Minerals (cont.)

- **Ca, P, and Vitamin D**
 - Try to keep the ratio of Ca to P (Ca:P) in the range of 2:1 to 1:1
 - Vitamin D is necessary for Ca absorption from intestines and bone deposition
 - Vit. D involved in renal reabsorption and bone deposition of P

Minerals (cont.)

- **General feeding guidelines** *(Know!)*
 - General rule-of-thumb
 - Grains tend to be low in Ca and adequate in P
 - Forages tend to be low in P and adequate in Ca
 - Phytic acid binds ~half the P in plants, and phytin-P is poorly utilized by nonruminants
 - Not a problem for ruminants because of rumen microorganisms
 - Fe needed for young pigs
Vitamins

- The name comes from “vital amines” which was shortened to “vitamines.”
 - “Vital” for life
 - Contain N
 - Vitamins A & C discovered….contained no N
 - Became “vitamins”
- Necessary for metabolic activity but do not become part of structural components of body

Vitamins (cont.)

- 4 fat-soluble vitamins
 - A, D, E, K
- 10 water-soluble vitamins
 - Thiamin, riboflavin, pantothenic acid, niacin, pyridoxine, biotin, folic acid, choline, B\textsubscript{12}
 - Vitamin C
- Monogastrics require a dietary source of all
- Ruminants: microorganisms synthesize Vitamin K, B vitamins & Vitamin C
Fat-soluble vitamins have “provitamins” (precursors)
- Chemically related substances that the body can convert to the active form of the vitamin
 - Carotene \rightarrow Vitamin A
 - Cholecalciferol (animal) & ergocalciferol (plants) \rightarrow Vitamin D
 - α-Tocopherol \rightarrow Vitamin E
 - Menadione \rightarrow Vitamin K

No provitamins for the B-vitamins or Vit. C

Storage

Functions
- B-vitamins
 - Fat-soluble vitamins
Vitamins (cont.)

- Primary functions/Signs of deficiency
 - Vitamin A
 - Vision, epithelial tissue maintenance, bone formation
 - Def: Night blindness, xeropthalmia; abnormal bone growth
 - Vitamin D
 - Bone formation/maintenance of blood Ca concE
 - Ca absorption, P reabsorption (renal tubules)
 - Def: Rickets (growing youth); osteomalacia (adult rickets – softening of bones)

Vitamins (cont.)

- Primary functions/Signs of deficiency
 - Vitamin E
 - Antioxidant / Maintain membrane integrity
 - Protect Vitamin A, essential fatty acids, etc. from peroxidation
 - Membrane lipid bilayers are high in PUFA which are subject to oxidation. Vitamin E's function in maintaining membrane integrity might attribute to its prevention of the membrane damage
 - Def: nutritional muscular dystrophy
Vitamins (cont.)

- Primary functions/Signs of deficiency
 - Vitamin K
 - Prothrombin formation; blood clotting
 - Def: spontaneous hemorrhages; prolonged clotting time
 - Antivitamin (antagonists)
 - Sweetclover disease in cattle
 - Dr. Karl P. Link
 - Dicoumarol; warfarin

Vitamins (cont.)

- Primary functions/Signs of deficiency
 - Niacin
 - Coenzyme for oxidation/reduction reactions (energy metabolism)
 - NAD & NADP
 - Def: pellagra (pelle for skin; agra for sour); 1730
 - Rough skin; dermatitis; “black tongue” in dogs
 - Humans: 3D’s - dermatitis, diarrhea, dementia
 - Spread with the spread of the cultivation of corn
 - Epidemic in southern U.S. after Civil War
 - 1915 – 10,000 deaths
Pellagra

1937 – Discovery: caused by niacin deficiency
 - Dr. Conrad Elvehjem

Two problems with corn
 - Niacin is bound (Bound form called niacytin)
 - Corn is low in tryptophan (precursor for niacin synthesis)

Discovery was confusing
 - Caused by spoiled corn? Infectious?
 - Low protein diets also resulted in pellagra (no Tryp)
 - Milk prevented and cured pellagra (↓ niacin but ↑ Tryp)
 - Mexicans eat tortillas, but very little pellagra
 - Soak corn in lime water to make tortillas; lime frees niacin!

Vitamins (cont.)