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Abstract - Plants emit volatile blends that may be quantitatively and/or qualitatively different in 

response to attack by different herbivore species. These differences may convey herbivore-

specific information to parasitoids and are predicted to play a role in mediating host specificity in 

specialist parasitoids. Here, we tested the above prediction by using as models two parasitoids 

(Hymenoptera: Braconidae) of cotton caterpillars with different degree of host specificity: 

Microplitis croceipes, a specialist parasitoid of Heliothis spp., and Cotesia marginiventris, a 

generalist parasitoid of caterpillars of several genera including Heliothis spp. and Spodoptera 

spp. We compared GC-EAD (coupled gas chromatography electroantennogram detection) 

responses of both parasitoid species to headspace volatiles of cotton plants damaged by H. 

virescens (a host species for both parasitoids) versus S. exigua (a host species for C. 

marginiventris). Based on a recent study in which we reported intriguing differences in the EAG 

responses of both parasitoid species to different types of host related volatiles, we hypothesized 

that M. croceipes (specialist) will show relatively greater GC-EAD responses to the herbivore-

induced plant volatile (HIPV) components of cotton headspace, whereas C. marginiventris 

(generalist) will show greater response to the green leaf volatile (GLV) components. Thirty 

volatile components were emitted by cotton plants in response to feeding by either of the two 

caterpillar species, however 18 components were significantly elevated in the headspace of H. 

virescens damaged plants. Sixteen volatile components consistently elicited GC-EAD responses 

in both parasitoid species. As predicted, C. marginiventris showed significantly greater GC-EAD 

responses than M. croceipes to most GLV components, whereas several HIPV components 

elicited comparatively greater responses in M. croceipes. These results suggest that differences in 

the ratios of identical volatile compounds between similar volatile blends may be used by 

specialist parasitoids to discriminate between host-plant and non-host-plant complexes. 
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INTRODUCTION 

Plants emit blends of volatile compounds in response to insect herbivory (Turlings et al., 

1990; McCall et al., 1994; Loughrin et al., 1994; De Moraes et al., 1998). This production of 

volatile compounds is triggered by substances present in the oral secretion of herbivores (Dicke 

et al., 1993; Turlings et al., 1993). The volatile compounds released from herbivore-damaged 

plants can be sub-divided into two major groups: constitutive compounds, and inducible or 

herbivore-induced plant volatiles (HIPVs). Constitutive compounds are constantly present in 

plants and are released immediately in response to mechanical damage or at the beginning of 

herbivore feeding, and include in many plants green leaf volatiles (GLVs) such as cis-3-hexenal, 

hexanal, and cis-3-hexen-1-ol (Turlings et al., 1990; Dicke et al., 1993; Loughrin et al., 1994; 

McCall et al., 1994; Cortesero et al., 1997; Smid et al., 2002; Gouinguené et al., 2005). On the 

other hand, HIPVs are emitted as a delayed response to herbivore feeding damage. HIPVs in 

cotton (Gossypium hirsutum L) and some other plants include cis-3-hexenyl acetate, cis-3-

hexenyl butyrate, indole, and various terpenoids such as (E,E)-α-farnesene, (E)-β-farnesene, (E)-

β-ocimene, and linalool (Dicke, 1994; Loughrin et al., 1994; McCall et al., 1994; Cortesero et 

al., 1997).  

 Although, the emission of volatiles is assumed to represent a generalized response to 

herbivore damage, it has been shown that the blends of volatile compounds released from 

herbivore damaged plants differ qualitatively and quantitatively depending on the plant species 

and variety (Dicke et al., 1990; Loughrin et al., 1994; Hoballah et al., 2002), the herbivore 
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species (De Moraes et al., 1998; Loughrin et al., 1994; McCall et al., 1994), and the stage of the 

herbivore (Takabayashi et al., 1991; Du et al., 1996). For instance, it was shown that corn (Zea 

mays L.) plants infested by beet armyworm Spodoptera exigua (Hübner) caterpillars emitted 

linalool, (3E)-4,8-dimethyl-1,3,7-nonatriene, (trans)-α-bergamotene and (E)-β-farnesene as 

major compounds, all of which were not detected in the headspace of soybean (Glycine max L.)  

plants infested by the same herbivore species (Turlings et al., 1993). In cotton plants, feeding by 

corn earworm Helicoverpa zea (Boddie) or S. exigua caterpillars induced the production of 

distinctive volatile blends that were qualitatively and quantitatively different (Loughrin et al., 

1994; McCall et al., 1994). McCall et al. (1994) reported that cotton plants damaged by H. zea 

emitted several compounds including (Z)-3-hexenyl acetate, (E)-β-ocimene, (3E)-4,8-dimethyl-

1,3,7-nonatriene, (Z)-3-hexenyl butyrate, (E)-2-hexenyl butyrate, (Z)-3-hexenyl-2-

methylbutyrate, (E)-2-hexenyl-2-methylbutyrate, and indole. Loughrin et al. (1994) conducted a 

similar study with cotton plants damaged by S. exigua and reported several compounds including 

some of the above compounds, and many which were not reported by McCall et al. (1994) such 

as (Z)-jasmone, (E)-β-farnesene, and (E,E)-α-farnesene.  Such differences in the composition of 

volatiles induced by different herbivore species may convey herbivore-specific information to 

parasitoids, and thus shape their foraging strategies (Dicke and Sabelis, 1988; Turlings et al., 

1990; McCall et al., 1993; Turlings et al., 1995). In particular, the volatile blend signature 

produced by plants in response to different herbivores may be used by specialist parasitoids as 

signals for host specificity (Du et al., 1996; De Moraes et al., 1998). For instance, the specialist 

parasitoid Cardiochiles nigriceps Viereck was able to exploit the differences in volatile blends 

produced by cotton or corn plants in response to different herbivores to distinguish infestation by 

its host, H. virescens from that by the closely related H. zea (De Moraes et al., 1998). 
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 The question of whether specialist and generalist parasitoids show differential response to 

different suites of host-related volatiles has been a major focus of evolutionary ecology in recent 

years (Vet et al., 1993; Geervliet et al., 1996; Bernays, 2001; Chen and Fadamiro, 2007; Stilmant 

et al., 2008). It is predicted that specialist parasitoids utilizing fewer number of hosts are likely to 

possess a relatively more highly sensitive (high olfactory sensitivity to host-related chemical 

cues) and narrowly-tuned (selective) host detection olfactory system than generalist parasitoids 

(Vet and Dicke, 1992; Cortesero et al., 1997; Smid et al., 2002; Chen and Fadamiro, 2007). 

However, only a few studies have compared olfactory response and sensitivity to host-related 

volatiles in specialist and generalist parasitoids to date, and have produced contrasting results 

(Elzen et al., 1987; Vet et al., 1993; Geerveliet et al., 1996; Chen and Fadamiro, 2007). On the 

one hand, some studies reported relatively greater response for specialists compared to 

generalists (Elzen et al., 1987; Vet et al., 1993). In contrast, Geervliet et al. (1996) recorded no 

differences in the behavioral responses of the specialist, Cotesia rubecula Marshall and the 

generalist, Cotesia marginiventris (Cresson) to host-related volatiles, and both species were 

unable to distinguish between plant volatiles induced by their hosts versus plant volatiles induced 

by nonhost species. Similarly, Smid et al. (2002) reported no differences in the receptive range of 

the specialist, C. rubecula and the generalist, Cotesia glomerata L. to a wide range of host-

related odor compounds.  Such discrepancies in the above studies suggest that diverse species of 

specialist and generalist parasitoids may respond differently to different types of host-related 

volatiles. Furthermore, even within a broad category of specialist or generalist parasitoids, 

differences may still exist among species based on the degree of specialization (De Moraes et al., 

1998; Tamo et al., 2006).  
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 In this study, we tested the above prediction using a tritrophic model system consisting of 

cotton (plant), H. zea and S. exigua (herbivores), and two parasitoids (Hymenoptera: Braconidae) 

with different degrees of host specificity, Microplitis croceipes (Cresson) and C. marginiventris. 

Microplitis croceipes is a relatively specialist parasitoid specific to the caterpillars of H. zea and 

H. virescens, while C. marginiventris is a generalist parasitoid of caterpillars of a wide range of 

lepidopteran species, including S. exigua, H. zea, H. virescens (Jalali et al., 1987; Turlings et al., 

1990; Lewis et al., 1991; Röse et al., 1998). Both parasitoid species were selected as 

experimental models for this comparative study because they have served as models in previous 

studies of parasitoid olfaction, and several aspects of their responses to host-related volatiles 

have been characterized (e.g., Dmoch et al., 1985; Li et al., 1992; Cortesero et al., 1997; Röse et 

al., 1998; Park et al., 2002; Gouinguené et al., 2005). For the first time, we used the coupled gas 

chromatography electroantennogram detection (GC-EAD) technique to test for similarities and 

differences in the antennal responses of both parasitoid species to headspace volatiles of cotton 

plants infested with H. virescens (a host species for both parasitoids) versus S. exigua (a host 

species for C. marginiventris but not for M. croceipes). Based on the results of a recent study in 

which we recorded differences in the electroantennogram (EAG) responses of both parasitoid 

species to various synthetic host-related volatile compounds (Chen and Fadamiro, 2007), we 

hypothesized that M. croceipes will show relatively greater GC-EAD responses than C. 

marginiventris (generalist) to the HIPV components of cotton headspaces, whereas the GLV 

components, which are emitted passively by plants and as a generalized response to herbivore 

damage will elicit relatively greater GC-EAD activity in the generalist.  
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METHODS AND MATERIALS 137 
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Plants. Cotton (G. hirsutum, var. max 9) plants were grown in individual pots (9 cm high, 11 cm 

diameter) in a greenhouse (Auburn University Plant Science Greenhouse Facility) at 25 °C ± 10, 

15:9 h (L/D) photoperiod and 50 ± 10% relative humidity. Seeds were planted in a top 

soil/vermiculate/peat moss mixture. Plants used for headspace volatile collections were 4-6 

weeks old. 

Caterpillars (Parasitoid Hosts). Two lepidopteran species, H. virescens and S. exigua were used 

as parasitoid hosts in this study. Both species are distributed throughout the United States and are 

important pests of important agricultural crops including corn, and cotton. Eggs purchased from 

Benzon Research (Carlisle, PA) were used to start laboratory colonies of both species. 

Caterpillars of both species were reared on a laboratory-prepared pinto bean diet (Shorey and 

Hale, 1965) at 25 ± 1oC, 75 ± 5% relative humidity and 14:10-h (L/D) photoperiod.  

Parasitoids. The parent cultures of M. croceipes and C. marginiventris were provided by the 

USDA-ARS, Insect Biology and Population Management Research Laboratory (Tifton, Georgia) 

and the University of Georgia, Tifton campus (contact: John Ruberson), respectively. M. 

croceipes was reared on caterpillars of H. virescens, its preferred host (Stadelbacher et al., 1984; 

King et al., 1985), whereas C. marginiventris was reared on caterpillars of its main host S. exigua 

(Jalali et al., 1987). The rearing procedures were similar to those of Lewis and Burton (1970), 

and the rearing conditions were the same as described above for the caterpillar hosts. For each 

species, newly emerged adults were collected prior to mating, sexed, and placed in groups of 2 

individuals of opposite sex (mated individuals) in a 6-cm diameter plastic Petri dish supplied 

with water and sugar sources. Water was provided by filling a 0.5 ml microcentrifuge tube with 
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distilled water and threading a cotton string through a hole in the cap of the tube. About 4-6 

drops (2 µl per drop) of 10% sugar solution were smeared on the inside of the Petri dish cover 

with a cotton-tipped applicator. Female parasitoids (aged 3-5 days old) of both species were used 

for the experiments. 
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Collection and GC Analysis of Headspace Volatiles. The methodology and protocols used for 

volatile collection were similar to those reported by Gouinguené et al. (2005), but with some 

modifications. Headspace volatiles were collected both from caterpillar damaged and undamaged 

cotton plants. To induce the production of HIPVs from cotton plants, 30 second instar 

caterpillars of H. virescens or S. exigua were allowed to feed on a potted cotton plant for 12 hr 

prior to volatile collection. The pot with the potting soil was wrapped with aluminum foil to 

minimize evaporation of water and volatiles from the soil. The plant (with the feeding 

caterpillars) was then placed in a volatile collection chamber (Analytical Research Systems, Inc., 

Gainesville, FL.) consisting of a 5 l glass jar. A purified (using activated charcoal) air stream of 

500 ml/min was passed through the jar at room temperature for 24 hr. The results of a pilot test 

which compared headspace volatile collection for 24 hr versus 12 hr showed no noticeable 

differences in the number or relative proportion of the peaks, however the 24 hr duration was 

selected because it produced consistent profiles in which all the key peaks were detected in 

relatively higher amounts. Headspace volatiles were trapped using a trap containing 50 mg of 

Super-Q (Alltech Associates, Deerfield, IL) and eluted with 200 µl of methylene chloride. The 

resulting extracts (200 µl) were stored in a freezer (at -20 °C) until use. Another container with 

potting soil without plant was used to check for miscellaneous impurities and background noise. 

The collection system was checked and controlled for breakthrough of the trap during sampling. 

One µl of each headspace volatile extract was injected into a Shimadzu GC-17A equipped with a 
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flame ionization detector (FID). The dimension of capillary column used was as follows: Rtx-

1MS, 0.25 mm I.D., 0.25 µm film thickness (Restek, Bellefonte, PA). Helium was used as carrier 

gas at a flow rate of 1 ml/min. The GC oven was programmed as follows: inject at 40 °C, hold at 

40 °C for 2 minute, and then increase by 5 °C/min to 200 °C for a total of 40 minutes.  The 

temperature of both injector and detector was set at 200 °C. 
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GC-EAD Recordings. The extracts were subjected to coupled gas chromatography-

electroantennogram detection (GC-EAD) analyses with females of both parasitoid species to 

detect biologically active peaks (components). GC-EAD analyses were conducted with samples 

of headspace volatiles from cotton plants infested with H. virescens or S. exigua caterpillars and 

detected with antennae of M. croceipes or C. marginiventris females (total of 4 combinations or 

treatments). The GC-EAD techniques used were similar to those described by Smid et al. (2002). 

Briefly, the system was based on the above Shimadzu GC-17A equipped with a FID and coupled 

to an electroantennogram (EAG) detector. The dimension of the GC capillary column was same 

as described above. The column effluent was mixed with 30 ml/min make-up helium and split at 

a ratio of 1:2 (v/v), with one part going to the FID and the other through a heated (220 °C) 

transfer line (Syntech®, Hilversum, the Netherlands) into a charcoal filtered, humidified 

airstream (1000 ml/min) directed at the antenna preparation (EAG detector). The GC oven was 

programmed as above. The antenna preparation and EAG techniques were same as previously 

described (Chen and Fadamiro, 2007). Glass capillaries (1.1 mm I.D.) filled with Ringer solution 

were used as electrodes. Parasitoids were first anaesthetized by chilling and the head isolated. 

The reference electrode was connected to the neck of the isolated head, while the recording 

electrode was connected to the antennal tip (with the last segment of antenna cut off). 
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Chlorinated silver-silver chloride junctions were used to maintain electrical contact between the 

electrodes and input of a 1 × preamplifier (Syntech
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®). The analog signal was detected through a 

probe (INR-II, Syntech®), captured and processed with a data acquisition controller (IDAC-4, 

Syntech®), and later analyzed with software (GcEad 32, Syntech®) on a personal computer. A 3-

µl aliquot of each sample was injected for a GC-EAD run. Five successful GC-EAD recordings 

were obtained for each treatment. GC-EAD traces were overlaid on the computer monitor and 

inspected for significant and consistent qualitative and quantitative differences among the 

treatments. 

 

 GC-MS Analyses. The GC-EAD active peaks in each treatment were later identified by gas 

chromatography-mass spectrometry (GC-MS) using an Agilent 7890A GC coupled to a 5975C 

Mass Selective Detector, with a HP-5ms capillary column (30 m × 0.25 mm I.D., 0.25 μm film 

thickness). One µl of each headspace extract was injected into the GC in splitless mode and 

using the GC conditions described above for GC-EAD. The chromatographic profiles were 

similar to those obtained from GC-EAD recordings making it possible to match the peaks. Mass 

spectra were obtained using electron impact (EI, 70 eV). Identification of EAD-active peaks was 

done by using NIST 98 library (National Institute of Standards and Technology, Gaithersburg, 

Maryland) and by comparing with published GC profiles of cotton head space volatiles 

(Thompson et al., 1971; Loughrin et al., 1994; McCall et al., 1994). The structures of the 

identified compounds were confirmed using commercially available synthetic standards with 

purity > 97% (as indicated on the labels) obtained from Sigma® Chemical Co. (St. Louis, 

Missouri). Significant differences in the amounts of each volatile component emitted by H. 
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virescens damaged versus S. exigua damaged cotton plants were established by using the 

Student’s t-test (P < 0.05, SAS Institute, 1998). 
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GC-EAD Analyses with Synthetic Blend.  In order to confirm the observed differences in the GC-

EAD responses of both parasitoids to the headspace extracts, a synthetic blend mimicking the 

headspace of caterpillar-infested cotton plants was prepared. This blend was formulated to mimic 

closely the active components of the headspace of cotton plants infested with H. virescens, 

although the same compounds were detected also in the headspace of cotton plants infested with 

S. exigua. It consisted of 13 synthetic volatile compounds which were identified as key 

biologically active components in the headspace volatiles of cotton plants infested with H. 

virescens, and blended at an approximate ratio in which they were detected in the headspace. The 

compounds were purchased from the above source with purity > 97% and included cis-3-

hexenal, trans-2-hexenal, cis-3-hexen-1-ol, cis-3-hexenyl acetate, trans -2-hexenyl acetate, 

linalool, cis-3-hexenyl butyrate, trans-2-hexenyl butyrate, indole, cis-jasmone, α-farnesene, α-

humulene, and trans-nerolidol, blended in the ratio of 4.8, 7.8, 1.9, 19.8, 12.2, 2.2, 13.3, 11.1, 

7.2, 0.4, 4.6, 4.3, and 10.2, respectively. Each compound was diluted in hexane and blended at 

the above ratio to obtain a 100 μg/μl solution.. A 3-µl aliquot of the blend (100 μg/μl) was 

injected for a GC-EAD run. Five successful GC-EAD recordings were obtained for each 

parasitoid species as described above.  

 

Quantification of GC-EAD Responses. GC-EAD responses of both parasitoid species to different 

volatile components were quantified by using a measurement marker tool available with the GC-

EAD software (GcEad 32). This tool enabled the quantification of EAD peaks in microvolts 
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(µV). Significant differences in GC-EAD responses of both parasitoid wasps to each volatile 

component were then established by using the Student’s t-test (P < 0.05: SAS Institute, 1998). 
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RESULTS 

GC and GC-MS Analysis of Headspace Volatiles. The GC profiles of the extracts of headspace 

volatiles from cotton plants infested with H. virescens or S. exigua versus uninfested 

(undamaged) plants are shown in Figure 1. A total of 30 peaks (volatile components) were 

detected in the headspace of plants infested with H. virescens or S. exigua (Figure 1A, B). The 

same identical compounds were detected in both extracts, meaning that no qualitative differences 

were recorded. However, noticeable quantitative differences were recorded between the two 

extracts. In particular, 18 peaks were significantly elevated in the headspace of plants infested 

with H. virescens compared to plants infested with S. exigua (Table 1). These elevated peaks, as 

identified by GC-MS, included cis-3-hexenal, cis-3-hexen-1-ol, α-pinene, β-myrcene, cis-3-

hexenyl butyrate, cis-3-hexenyl-2-methyl butyrate, cis-jasmone, α-farnesene, trans-nerolidol, 

and several other HIPV components. No peaks were obviously elevated in the headspace of 

plants infested with S. exigua, relative to those infested with H. virescens. Most of the above 

peaks were not detected or were detected in insignificant amounts in the headspace of 

undamaged cotton plants (Figure 1C). Only five peaks (components) were slightly detectable in 

undamaged plants and were identified by GC-MS as α-pinene, trans-2-hexenyl butyrate, linalool, 

n-decanal, and caryophyllene. However, all five components were detected in much greater 

amounts in the headspace of caterpillar-infested plants. 
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GC-EAD Responses. Similarities were recorded in the GC-EAD responses of M. croceipes and 

C. marginiventris females to volatiles from cotton plants infested with the two caterpillar 

species. Sixteen components of the headspace of caterpillar-infested plants elicited consistent 

GC-EAD responses in both parasitoid species (Figures 2 and 3). As identified by GC-MS, these 

volatiles included several GLVs (cis-3-hexenal, trans-2-hexenal, cis-3-hexen-1-ol, and trans-2- 

hexen-1-ol) and HIPVs ((E)-4,8-dimethyl-1,3,7-nonatriene, cis-3-hexenyl butyrate, trans-2-

hexenyl butyrate, n-decanal, cis-3-hexenyl-2-methyl butyrate, trans-2-hexenyl-2-methyl 

butyrate, indole, isobutyl tiglate, (E)-2-hexenyl tiglate, cis-jasmone, caryophyllene, α-trans 

bergamotene, α-farnesene, α-humulene, β-farnesene, β-hemachalene, and trans-nerolidol). More 

importantly, key differences were recorded in the response patterns of both parasitoids to the 

different components of the headspace extracts. Quantitatively, C. marginiventris (generalist) 

showed significantly greater GC-EAD responses to the GLV (e.g., cis-3-hexenal, trans-2-

hexenal and cis-3-hexen-1-ol) components of the two extracts, compared to M. croceipes 

(specialist) (Table 2, Figures 2 and 3). In contrast, several HIPV components of both extracts 

(e.g., cis-3-hexenyl acetate, linalool, cis-3-hexenyl butyrate and trans-2-hexenyl butyrate) 

elicited significantly greater responses in M. croceipes, compared to C. marginiventris. In 

addition, α-humulene also elicited greater response in M. croceipes than in C. marginiventris, but 

this was significant only for H. virescens-infested headspace extract. Also, M. croceipes showed 

relatively greater GC-EAD responses than C. marginiventris to indole and cis-jasmone, but these 

differences were significant only for S. exigua-infested extract. Note that responses of C. 

marginiventris to some of the HIPV components were very low and barely detectable in Figures 

1 and 2. In general, the GC-EAD responses of both parasitoid species to the synthetic blend 

mimicked their responses to the headspace volatiles of caterpillar-infested plants (Table 2, Fig. 
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4). A confirmatory test in which the synthetic blend was tested at a reduced amount (i.e., 1 µl of 

a 0.1 μg/μl solution of the blend was injected for a GC-EAD run) produced similar results as 

those shown in Figure 4, suggesting that the amounts tested in the initial experiment with 

synthetic blend were not too high or physiologically irrelevant. 
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DISCUSSION 

The results of this study showed that M. croceipes and C. marginiventris females were 

capable of responding antennally to many but not all of the caterpillar-induced cotton volatiles, 

with both parasitoid species showing differential electrophysiological responses to the different 

components of the volatile blends. Compared to undamaged plants, cotton plants emitted 

detectable amounts of a wide range of volatiles, specifically 30 volatile compounds, in response 

to damage by H. virescens or S. exigua. In general, our results are in agreement with those 

previously reported by other authors on the induction of cotton volatiles by caterpillar species 

(Loughrin et al., 1994; McCall et al., 1994), but with some important differences. Loughrin et al. 

(1994) and McCall et al. (1994) reported 23 and 22 compounds, respectively from the headspace 

of caterpillar-infested cotton plants, most of which were identified also in the present study. 

These compounds included GLVs such as cis-3-hexenal, trans-2-hexenal, and cis-3-hexen-1-ol, 

and HIPVs such as cis-3-hexenyl acetate, linalool, (E,E)-4,8-dimethyl-1,3,7-nonatriene, cis-3-

hexenyl butyrate, trans-2-hexenyl butyrate, trans-2-hexenyl-2-methyl butyrate, indole, cis-

jasmone, (E,E)-α-farnesene, α-humulene, and trans-nerolidol. However, we also detected 

additional volatile compounds which were not reported by Loughrin et al. (1994) and McCall et 

al. (1994), including n-decanal, (E)-2-hexenyl tiglate, and β-hemachelene. The difference 
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between our results and those reported by Loughrin et al. (1994) and McCall et al. (1994) may be 

due to many factors including differences in headspace volatile collection methodology, 

sensitivity of the analytical system, and cotton cultivar. For instance, we collected cotton 

volatiles continuously for 24 hr beginning 12 hr after the plants were infested with caterpillars. 

Loughrin et al. (1994) collected volatiles for 3-hr duration in each trap continuously for 60 hr, 

beginning 1 hr after plants were infested with caterpillars, while McCall et al. (1994) collected 

volatiles continuously for 2 hr beginning 16-19 hr after caterpillar feeding began. Furthermore, 

differences in the species/strains and stages of caterpillars tested may play a role. Loughrin et al. 

(1994) used S. exigua caterpillars, while H. zea caterpillars were used by McCall et al. (1994). In 

the present study, we tested H. virescens and S. exigua caterpillars. 

316 

317 

318 

319 

320 

321 

322 

323 

324 

325 

326 

327 

328 

329 

330 

331 

332 

333 

334 

335 

336 

337 

338 

 We recorded major differences in the amounts of the volatile compounds induced by H. 

virescens versus S. exigua. Of the total 30 components identified, 18 were detected in 

significantly higher amounts in the headspace of H. virescens damaged plants, compared to S. 

exigua damaged plants. These results suggest that the essential difference between the volatile 

blends induced by both caterpillar species is quantitative, rather than qualitative. Similar 

differences in the headspace volatile composition of plants infested by different herbivore 

species have been reported in cotton (McCall et al., 1994; Loughrin et al., 1994; De Moraes et 

al., 1998), corn (Turlings et al., 1998; De Moraes et al., 1998), cabbage (Agelopoulous and 

Keller, 1994; Geervliet et al., 1997), and tobacco (De Moraes et al., 1998). It has been proposed 

that herbivore-specific volatile blends that differ significantly and consistently may provide 

reliable, information-rich signals to foraging parasitoids (De Moraes et al., 1998). Thus, the 

change in proportions or ratios of volatile compounds in the headspace of H. virescens damaged 

cotton plants, compared to S. exigua damaged plants may convey herbivore-specific information 
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to specialist parasitoids, such as M. croceipes. On the other hand, generalist parasitoids, such as 

C. marginiventris, which have a wide host range, may not necessarily use herbivore-specific 

signals for host location. It is important to note that the use of plant volatiles by both parasitoids 

to locate host-infested plants may suggest that both are generalists in terms of host habitat 

location.   

339 

340 

341 

342 

343 

344 

345 

346 

347 

348 

349 

350 

351 

352 

353 

354 

355 

356 

357 

358 

359 

360 

361 

Only 16 of the 30 volatile components consistently elicited GC-EAD responses in M. 

croceipes and C. marginiventris, suggesting that not all the volatile components are perceived by 

both parasitoid species, a finding in concert with those previously reported for some other 

parasitoid wasp species (Li et al., 1992; Park et al., 2001; Smid et al., 2002; Gouinguené et al., 

2005). The reason why parasitoids do not perceive all the components of the headspace volatile 

of caterpillar-damaged plants is an interesting evolutionary question which deserves to be 

addressed. It is note worthy that most of the 16 GC-EAD active volatile compounds were among 

those elevated in H. virescens damaged plants. Our results showed no obvious qualitative 

differences in the range of compounds detected by both parasitoid species. This is the first 

comparative study of GC-EAD responses of both parasitoid species to herbivore-induced cotton 

volatiles. In one of the few similar studies on other tritrophic systems, Smid et al. (2002) 

reported no differences in the GC-EAD responses of the specialist parasitoid, C. rubecula and 

the generalist, C. glomerulata to a wide range of volatiles from Brussels sprouts damaged by two 

species of Pieris caterpillars. In contrast, Gouinguene et al. (2005) reported some key differences 

in the GC-EAD responses of three parasitoid wasps to maize volatiles damaged by Spodoptera 

littoralis Boisduval caterpillars. Relatively more compounds elicited GC-EAD responses in the 

generalists, C. marginiventris and Campoletis sonorensis (Cameron), compared to Microplitis 

rufiventris Kok., which is found more often on S. littoralis (Gouinguené et al., 2005).  
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The major difference recorded in our study was in the intensity of GC-EAD response of 

both parasitoids to several compounds. For the first time, we utilized a measurement tool in the 

GC-EAD software to quantify and then establish significant differences in GC-EAD responses of 

the two parasitoid species to the various volatile components. The generalist, C. marginiventris 

showed significantly greater GC-EAD responses than the specialist, M. croceipes to most GLV 

components, whereas several HIPV components elicited comparatively greater responses in M. 

croceipes. Similar differences in the intensity of response of parasitoids to host-related 

compounds were also reported by Gouinguené et al. (2005). The authors reported that the 

generalist parasitoids, C. marginiventris and C. sonorensis showed a greater sensitivity to cotton 

GLVs cis-3-hexanal, trans-2-hexanal and cis-3-hexen-1-ol) than the more restricted M. 

rufiventris. Our results in which females of the generalist C. marginiventris showed 

comparatively greater GC-EAD responses to GLVs (cis-3-hexanal, trans-2-hexanal and cis-3-

hexen-1-ol), which are continuously present in the plant and released in freshly damaged plants 

support our hypothesis, and are somewhat in agreement with previous electrophysiological 

(Gouinguené et al., 2005; Chen and Fadamiro, 2007) and behavioral studies (Cortesero et al., 

1997; Hoballah et al., 2002; D’Alessandro and Turlings, 2005; Hoballah and Turlings, 2005). 

Similar to our results, Gouinguené et al. (2005) also reported that C. marginiventris showed little 

or no antennal response to several HIPVs including β-myrcene, β-caryophyllene, bergamotene, 

and β-farnesene. In contrast, the specialist M. croceipes showed greater GC-EAD responses to 

the HIPVs, which are more specifically linked to its host. These findings were verified by the 

results of the GC-EAD tests with the synthetic blend, which also showed the same differences in 

the intensity of response of both parasitoid species.  
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In general, M. croceipes showed slightly greater GC-EAD responses to headspace 

volatiles collected from cotton plants damaged by its host species (H. virescens) than to 

headspace volatiles collected from cotton plants that were damaged by the non-host species (S. 

exigua). Our GC data showed that the essential difference between the volatile blends of cotton 

plants induced by H. virescens versus S. exigua is in the amounts and consequently ratios of the 

same identical compounds. De Moraes et al. (1998) reported also that the main difference in the 

volatile blends of plants damaged by H. virescens versus H. zea was in the ratios of identical 

compounds. The authors further reported that the specialist parasitoid C. nigriceps could 

distinguish behaviorally plants damaged by its host, H. virescens from those damaged by H. zea 

(a non-host species), possibly by exploring the differences in the ratios of identical compounds in 

the volatile blends. Thus, the differences recorded in this study in the ratios of the same identical 

compounds in the volatile blends induced by the two caterpillar species may be exploited by M. 

croceipes to differentiate plants damaged by its host from non-host species. This proposition is 

supported by our GC-EAD results which showed greater response of M. croceipes to volatiles 

from H. virescens damaged plants, compared to S. exigua damaged plants. The need to 

discriminate hosts from related non-hosts based on subtle differences in the ratios of identical 

compounds in volatile blends is without doubt a challenging task for specialist parasitoids, such 

as M. croceipes. Thus, it is likely that other unknown minor compounds as well as host-specific 

volatiles may play also a role in differentiation of host versus non-host by M. croceipes. 
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In contrast, no obvious differences were observed in the response of C. marginiventris to 

volatile blends induced by both caterpillar species. Our data for C. marginiventris are in 

agreement with the report by Geervliet et al. (1996) that a related generalist species, C. 

glomerata was unable to distinguish between plant volatiles induced by its hosts versus plant 
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volatiles induced by non-host species. However, C. glomerata was able to discriminate between 

plant volatiles induced by its hosts versus volatiles induced by non-host species after learning 

(Geervliet et al., 1998). This suggests that associative learning may improve the overall ability of 

C. marginiventris to respond to the HIPV components of the volatile blends, as has been reported 

for some other generalist parasitoids (Turlings et al., 1989, 1993; Vet and Groenewold, 1990; 

Vet, 1999; Steidle and van Loon, 2003; Tamo et al., 2006). Indeed, there is evidence that 

associative learning may improve response of C. marginiventris to induced volatiles 

(D’Alessandro and Turlings, 2005). Furthermore, the results of an ongoing study in our 

laboratory suggest that associative learning may enhance the behavioral response of C. 

marginiventris to host-related volatiles (unpublished data).  
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The recorded differences in the antennal sensitivity of M. croceipes and C. marginiventris 

to host-related volatiles may be related to possible differences in the abundance and distribution 

of olfactory sensilla on the antennae of both parasitoid species. Sensilla placodea has been 

identified as the main olfactory sensilla responsive to host-related volatiles in M. croceipes 

(Ochieng et al., 2000) and Cotesia spp. (Bleeker et al., 2004). A comparative study of antennal 

morphology of the closely related C. rubecula and C. glomerata revealed significant differences 

in the density and distribution of this sensilla type (Bleeker et al., 2004). In an ongoing 

comparative study of antennal sensilla of M. croceipes and C. marginiventris in our laboratory, 

we recorded relatively greater numbers of olfactory sensilla placodea on M. croceipes than on C. 

marginiventris antennae (unpublished data). This difference in the density of olfactory sensilla 

may explain the differences in GC-EAD responses of both parasitoid species recorded in this 

study.  
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In summary, the results support our hypothesis and may provide insights into how 

specialist parasitoids can distinguish between plants damaged by their hosts versus plants 

damaged by closely related non-hosts, even though the different hosts may induce the emission 

of qualitatively similar volatile blends. The data suggest that differences between similar volatile 

blends in the ratios of identical volatile compounds may contribute to host specificity in 

specialist parasitoids, such as M. croceipes. Additionally, unknown minor compounds as well as 

host-specific volatiles may play also a role in the differentiation of different host-plant 

complexes. Further discrimination may be mediated at short range by host contact kairomones 

(which are typically of relatively lower volatility), such as host feces (Loke and Ashley, 1984; 

Dmoch et al., 1985; Afsheen et al., 2008) and caterpillar chemical footprints on infested plants 

(Rostás and Wölfling, 2009). Future behavioral studies are necessary to confirm whether or not 

the ability of M. croceipes to distinguish between plants damaged by its host and non-host 

caterpillars (Rosé et al., 1997), is in fact mediated by the subtle quantitative differences in 

volatile blends, as recorded in this study. If confirmed, the neurophysiological mechanisms 

mediating this fine scale ability for odor discrimination will be addressed in the future using 

single sensillum and neuroanatomical techniques. 
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TABLE 1. COMPOSITION OF VOLATILES COLLECTED FROM COTTON PLANTS 

INFESTED FOR 24 HR WITH H. VIRESCENS OR S. EXIGUA CATERPILLARS AND 

UNDAMAGED CONTROL PLANTS 

666 

667 

668 

669 
670 

 
 

     
H. virescens-infested S. exigua-infested UninfestedID Compounda

Amount  
 (ng ± SE)b 

Relative 
% 

Amount  
 (ng ± SE)b 

Relative 
% 

Amount  
 (ng ± SE)b 

Relative 
% 

1 cis-3-hexenal 39,350 ± 3212 a 1.9 1,408 ± 238 b 0.09 0 0 
2 trans-2-hexenal 63,420 ± 1106 3.0 72,438 ± 2520 5.0 0 0 
3 cis-3-hexen-1-ol 15,740 ± 670 a 0.8 8,200 ± 720 b 0.5 0 0 
4 trans-2-hexen-1-ol 69,402 ± 2230 3.3 67,120 ± 1340 4.7 0 0 
5 α-pinene 98,310 ± 3110 a 4.5 83,120 ± 2620 b 5.8 100 ± 25 18.5 
6 β-pinene 58,239  ±1939 a 2.8 42,300 ± 1940 b 2.9 0 0 
7 myrcene 120,259  ± 5920 a 5.8 15,465 ± 853 b 1.1 0 0 
8 cis-3-hexenyl acetate 161,470  ± 2350 7.7 120,475 ± 4860 8.4 0 0 
9 trans-2-hexenyl acetate 99,214 ± 1074 4.8 111,345 ± 3740 7.8 0 0 
10 limonene 110,259 ± 983 a 5.3 84,330 ± 750 b 5.9 0 0 
11 β-ocimene 120,257 ± 1506 a 5.8 89,354 ± 2015 b 6.2 0 0 
12 linalool 18,343 ± 939 0.9 18,468 ± 542 1.3 150 ± 38 27.7 
13 unknown 59,320 ± 1812 2.8 58,458 ± 2040 4.1 0 0 
14 4,8-dimethyl-1,3,7-nonatriene 21,320 ± 1003 1.0 78,800 ± 1296 5.5 0 0 
15 cis-3-hexenyl butyrate 108,345 ± 1690 a 5.2 36,900 ± 1165 b 2.5 0 0 
16 trans-2-hexenyl butyrate 90,210 ± 4500 4.3 91,356 ± 4300 6.4 135 ± 60 25.0 
17 n-decanal 5,300 ± 412 0.3 4,800 ± 109 0.3 75 ± 18 13.8 
18 cis-3-hexenyl-2-methyl 

butyrate 135,100 ± 3600 a 
 
6.5 2,800 ± 198 b 

 
0.2 0 

 
0 

19 trans-2-hexenyl-2-methyl 
butyrate 128,950 ± 5300 

 
6.2 115,220 ± 5200 

 
8.0 0 

 
0 

20 indole 58,430 ± 1250 a 2.8 43,200 ± 2700 b 3.0 0 0 
21 isobutyl tiglate 15,900 ± 840 a 0.8 2,300 ± 350 b 0.2 0 0 
22 2-hexenyl tiglate 6,500 ± 152 0.3 14,999 ± 1650 1.0 0 0 
23 cis-jasmone 3,200 ± 636 a 0.2 900 ± 330 b 0.1 0 0 
24 caryophyllene 170,500  ± 6835 8.2 154,230 ± 5300 10.7 80 ± 40 14.8 
25 α-trans bergamotene 16,378 ± 910 a 0.8 468 ± 130 b 0.03 0 0 
26 α-farnesene 37,745 ± 2470 a 1.8 23,300 ± 3564 b 1.6 0 0 
27 α-humulene 35,200 ± 1119 a 1.7 2,300 ± 745 b 0.2 0 0 
28 β-farnesene 48,239 ± 636 a 2.3 1,305 ± 248 b 0.09 0 0 
29 β-hemachalene 94,600 ± 3830 a 4.5 65,780 ± 3200 b 4.6 0 0 
30 trans-nerolidol 83,170 ± 868 a 4.0 23,450 ± 1950 b 1.6 0 0 
        

 671 
672 
673 
674 
675 
676 
677 

a In order of elution during gas chromatography 
b Values (amount emitted) are mean ± SE of five replicate extractions 
Means across the same row for the same headspace extract followed by different letters are 
significantly different (P < 0.05, t-test). 
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TABLE 2. QUANTIFICATION OF GC-EAD RESPONSES OF M. CROCEIPES AND 

C.MARGINIVENTRIS TO THE DIFFERENT COMPONENTS OF HEADSPACE EXTRACTS 

OF COTTON PLANTS INFESTED WITH H. VIRESCENS OR S. EXIGUA, AND A 

SYNTHETIC BLEND OF GC-EAD ACTIVE COMPONENTS 

678 

679 

680 

681 

     
ID Compounda H. virescens-infested S. exigua-infested Synthetic Blend

  Microplitis 
croceipes 

(µV ± SE)b

Cotesia 
marginiventris 

(µV ± SE)b

Microplitis 
croceipes 

(µV ± SE)b

Cotesia 
marginiventris 

(µV ± SE)b

Microplitis 
croceipes 

(µV ± SE)b

Cotesia 
marginiventris 

(µV ± SE)b

1 cis-3-hexenal 72 ± 6.6 b 192 ± 10 a 56 ± 4.0 b 172 ± 12 a 140 ± 8.9 b 240 ± 11 a 
2 trans-2-hexanal 64 ± 6.3 b 82 ± 8.4 a 56 ± 4.0 b 88 ± 6.2 a 62 ± 4.8 b 96 ± 6.8 a 
3 cis-3-hexen-1-ol 44 ± 4.0 b 72 ± 8.0 a 48 ± 8.0 b 80 ± 6.3 a 76 ± 4.5 b 98 ± 6.3 a 
4 cis-3-hexenyl 

acetate 
144 ± 7.2 a 92 ± 8.0 b 176 ± 6.4 a 72 ± 8.5 b 136 ± 7.4 a 84 ± 4.0 b 

5 trans-2-hexenyl 
acetate 

52 ± 6.3 48 ± 6.3 54 ± 6.3 46 ± 5.8 96 ± 7.4 a 28 ± 4.8 b 

6 linalool 72 ± 6.9 a 24 ± 4.0 b 80 ± 6.3 a 24 ± 4.0 b 80 ± 7.4 a 64 ± 6.2 b 
7 4,8-dimethyl 

nonatriene 
92 ± 5.0 88 ± 5.0 100 ± 9.0 a 44 ± 4.0 b   

8 unknown 108 ± 5.0 88 ± 8.0 100 ± 12 72 ± 4.8   
9 cis-3-hexenyl 

butyrate 
104 ± 7.5 a 60 ± 6.3 b 172 ± 8.0 a 56 ± 4.2 b 240 ± 10 a 68 ± 4.8 b 

10 trans-2-hexenyl 
butyrate 

100 ± 6.3 a 60 ± 5.3 b 100 ± 6.3 a 32 ± 4.8 b 62 ± 4.8 a 28 ± 3.6 b 

11 trans-2-hexenyl-
2-methyl butyrate 

60 ± 6.3 40 ± 8.9 88 ± 8.0 a 24 ± 4.0 b   

12 indole 24 ± 9.8 36 ± 7.5 80  ± 6.3 a 32 ± 4.8 b 28 ± 4.8 16 ± 4.0 
13 cis-jasmone 52 ± 4.8 38 ± 4.8 48 ± 5.8 a 12 ± 4.8 b 88 ± 4.8 a 52 ± 4.4 b 
14 α-farnesene 60 ± 6.3 48 ± 8.0 42 ± 4.9 12 ± 3.8 88 ± 8.0 a 24 ± 4.0 b 
15 α-humulene 60 ± 6.3 a 8 ± 3.8 b 38 ± 3.7 16 ± 4.2 16 ± 4.0 8 ± 4.8 
16 trans-nerolidol 16 ± 4.0 12 ± 4.8 12 ± 4.8 9 ± 4.8 20 ± 6.3 20 ± 6.3 

        
 682 

683 
684 
685 
686 

a In order of elution during gas chromatography 
bValues (µv) are mean ± SE of five replicates 
Means across the same row for the same headspace extract or synthetic blend followed by 
different letters are significantly different (P<0.05, t-test). 
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FIGURE LEGENDS 687 
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FIG. 1. Chromatographic profiles of headspace volatiles collected from cotton plants infested 

with H. virescens (A) or S. exigua (B) caterpillars, versus undamaged control plants (C). 

Identified compounds: (1)  cis-3-hexenal; (2) trans-2-hexenal; (3) cis-3-hexen-1-ol; (4) trans-2-

hexen-1-ol; (5) α-pinene; (6) β-pinene; (7) myrcene; (8) cis-3-hexenyl acetate; (9) trans-2-

hexenyl acetate; (10) limonene;  (11) β-ocimene; (12) linalool; (13) unknown;  (14) (E)-4,8-

dimethyl-1,3,7-nonatriene; (15) cis-3-hexenyl butyrate; (16) trans-2-hexenyl butyrate ; (17) n-

decanal (18) cis-3-hexenyl-2-methyl butyrate; (19) trans-2-hexenyl-2-methyl butyrate; (20) 

indole; (21) isobutyl tiglate; (22) (E)-2-hexenyl tiglate; (23) cis-jasmone; (24) caryophyllene; 

(25) α-trans bergamotene; (26) α-farnesene; (27) α-humulene; (28) β-farnesene; (29) β-

hemachalene; (30) trans-nerolidol.  

 

FIG. 2. GC-EAD responses of M. croceipes (A) and C. marginiventris (B) to headspace volatiles 

from H. virescens damaged cotton plants. GC-EAD active compounds: (1) cis-3-hexenal; (2) 

trans-2-hexenal; (3) cis-3-hexen-1-ol; (4) cis-3-hexenyl acetate; (5) trans -2-hexenyl acetate; (6) 

linalool; (7) (E)-4,8-dimethyl-1,3,7-nonatriene; (8) unknown; (9) cis-3-hexenyl butyrate; (10) 

trans-2-hexenyl butyrate ; (11) trans-2-hexenyl-2-methylbutyrate; (13) cis-jasmone; (14) α-

farnesene, (15) α-humulene; (16) trans-nerolidol. Note that responses of C. marginiventris to 

some of the HIPV components were almost too low to be detectable in this and the next two 

figures. GC-EAD responses of both species to the various compounds are quantified in Table 2. 

 

FIG. 3. GC-EAD responses of M. croceipes (A) and C. marginiventris (B) to headspace volatiles 

from S. exigua damaged cotton plants. GC-EAD active compounds: (1) cis-3-hexenal; (2) trans-

  34



2-hexenal; (3) cis-3-hexen-1-ol; (4) cis-3-hexenyl acetate; (5) trans -2-hexenyl acetate; (6) 

linalool; (7) (E)-4,8-dimethyl-1,3,7-nonatriene; (8) unknown; (9) cis-3-hexenyl butyrate; (10) 

trans-2-hexenyl butyrate ; (11) trans-2-hexenyl 2-methylbutyrate; (12) indole; (13) cis-jasmone; 

(14) α-farnesene, (15) α-humulene; (16) trans-nerolidol. GC-EAD responses of both species to 

the various compounds are quantified in Table 2. 
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FIG. 4. GC-EAD responses of M. croceipes (A) and C. marginiventris (B) to a synthetic blend 

mimicking the headspace volatiles of caterpillar-infested cotton plants. The blend consisted of 13 

compounds (listed below) identified as key biologically active components in the headspace 

volatiles of cotton plants infested with H. virescens, and blended at an approximate ratio in 

which they were detected in the headspace. Synthetic compounds: (1) cis-3-hexenal; (2) trans-2-

hexenal; (3) cis-3-hexen-1-ol; (4) cis-3-hexenyl acetate; (5) trans -2-hexenyl acetate; (6) linalool; 

(9) cis-3-hexenyl butyrate; (10) trans-2-hexenyl butyrate; (12) indole; (13) cis-jasmone; (14) α-

farnesene, (15) α-humulene; (16) trans-nerolidol. GC-EAD responses of both species to the 

various compounds are quantified in Table 2. 
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