

Auburn University

Major Industry Concerns

Auburn University

Current Technology to Monitor Insect Pests

Non-specific trap of insect pests

Auburn University

Sites vary in species and abundance

Year	No. genera (total)	# species (total)
1998	6-10 (11)	7-18 (21)
1999	6-9 (9)	12-18 (19)

Abundance is different between years on the same site (ranked the same)

Year	No. beetle	s per site	
	(average)		
1998	117-	1464 (683)	
1999	627-	1193 (920)	
Mannion and Oliver 2001 Environ Entomol			
Auburn University		Aug. 4 th	, 2011

A few species dominate

	% of total species		
Species	1998	1999	total
Xyleborinus saxeseni Ratzeburg	38.6	57.9	49.7
Monarthrum fasciatum Say	25	<5	12.5
Xylosandrus crassiusculus (Motschulsky)	11.3	22.4	17.6
Xyleborus pelliculosus Eichhoff	6.8	<5	4.1
Monarthrum mali Fitch	5.2	6.2	5.7
Hypothenemus spp.	0.4	0.3	0.4
Xylosandrus germanus Blandford	3.6	0.4	1.7

Mannion and Oliver 2001 Environ Entomol

Auburn University

C	No. Cages	No. emerging		
Species		Males	Females	Total
No Emergence	96	_	_	
Solitary				
Hypothenemus sp. 2	2	0	4	4
Hypothenemus sp. 3	2	0	2	2
Hypothenemus sp. 4	1	0	1	1
Xyleborinus saxeseni	1	0	3	3
Xylosandrus crassiusculus	15	10	148	158
Xylosandrus germanus	61	16	257	273
Mixed				
Xylosandrus crassiusculus	4	1	28	29
Xylosandrus germanus		4	12	16
Hypothenemus sp. 2	1	0	1	1
Hypothenemus sp. 4		0	2	2
Xyleborinus saxeseni	1	0	1	1
Xylosandrus germanus		1	3	4
Total	184	32	462	494

Table 2. Total and percent emergence of different species of ambrosia beetle from chestnut at the Nursery Crop Research Station, McMinnville, TN, in 1999

203 galleries were not caged.

The dominant species in traps isn't always the species attacking:

Hypothenemus spp.: 0.4% of capture

X. germanus: 0.4% of capture

Mannion and Oliver 2001 Environ

Auburn University

Entomol Aug. 4th, 2011

Attack period coincident with peak trap collections.

Traps good for detecting activity but may provide false positives of when tress are under attack.

Mannion and Oliver 2001 Environ Entomol

Auburn University

Project Goals

- Auburn team will research, develop, and field test an integrated trap with sensor devices that will
- > 1) attract the target insect pest by sight, sound and smell;
- > 2) identify the presence of the insect;
- > 3) measure the population of the insect

Significance

- Reduce the need for labor intensive visual scouting for insect pests
- Improve growers' ability of low infestation levels
- Intensify management inputs only during periods of greatest disease transmission
- Efficient insecticide application

Lower cost and labor

✓ Reduce the consumption of energy

✓ Improve the cleanliness of the environment and human health

Auburn University

Trap Design with LED Attractant

> Vane ≻ LED **Catching container** > Funnel \triangleright Variable resistor Power

Auburn University

Parameters of LED

Content	Specification	Comment
# of LED	9ea / trap	-
Color	Red, Blue, Green, UV	-
Wavelength	Red :615nm ~ 645nmGreen :500nm ~ 530nmBlue :450nm ~ 470nmUV :380nm ~ 400nm	-
Voltage	12V	This LED has a resistor with $1k\Omega$
Max. Power	720mW	_
Intensity	-	Intensity of LED will be controlled by a va riable resistor.

Auburn University

Examples of Captured Insect

≻ Ref.

Auburn University

Results on LED Attractant

Light increases overall trap captures and the number of Xylosandrus

Moths are most by-catch; due to 24 h light

Replacing battery power with solar cell

Results on LED Attractant

- ✓ The traps installed with combined visual and volatile cues seem more effectiveness than the traps with only volatile cues.
- → Better trapping by the use of combined cues can be found in other literature. Ref) Prokopy, R.J¹ and G. LO'PEZ-GUILLE'N²)
- Target beetles are more influenced by green and UV light than other frequencies.

1) Environ. Entomol. 2: 953-954.(1973)
2) J. Econ. Entomol. 102(3): 954-959 (2009)

Auburn University

Stress volatiles are emitted from "stressed" trees Ethanol, methanol, acetaldehyde, acetone

Ethanol>Methanol were the most attractive to *X. germanus*

Ranger et al. 2010 Agric. Forest Entomol.

Methanol and ethanol blends are more effective than single component volatile lures for coffee shoot borer (Hypothenemus hampei)

Dufour and Frerot 2008 J. Appl. Entomol.

Auburn University

Field Trial Results in Alabama

Ratio of methanol to ethanol influences captures of Xylosandrus

Mixed blends better than 100% of either

Evaluating additional volatiles

Sound Sensor

MEMS sound sensor to identify insects

Auburn University

Sound Sensor

Species	Ref. no.	N	Wing beat frequency (Hz)	Body mass (mg)
Gyrinidae				
Dineutus americanus Fabricius	1	29	73.8 ± 16.10	$49{\cdot}16\pm7{\cdot}34$
Scarabaeidae				
Diplotaxis frondicola Say	2	50	78.9 ± 5.16	23.80 ± 6.47
Hoplia limbata LeConte	3	20	80.8 ± 10.70	56.70 ± 9.40
Phyllophaga ephilida Say	4	25	61.6 ± 6.30	205.89 ± 95.91
Popillia japonica Newman	5	100	118.5 ± 8.91	93.20 ± 19.99
Elateridae				
Ctenicera sp. Latreille	6	10	89.9 ± 9.31	28.40 ± 12.04
Agriotes sp. Eschscholtz	7	17	109.1 ± 14.30	11.90 ± 6.87
Cantharidae				
Chauliognathus pennsylvanicus DeGeer	8	102	$88{\cdot}7\pm5{\cdot}80$	$38{\cdot}49 \pm 15{\cdot}01$
Chauliognathus marginatus Fabricius	9	12	86.7 ± 7.31	21.08 ± 9.01
Cantharis bilineatus Say	10	25	89.8 ± 7.95	16.68 ± 7.59
Lampyridae				
Lucidota atra Fabricius	11	22	64.7 ± 7.60	42.50 ± 19.67
Photinus pyralis Linné	12	75	60.9 ± 4.90	25.91 ± 8.96
Coccinellidae				
Coccinella septempunctata Linné	13	30	76.9 ± 9.10	30.60 ± 11.55
Coleomegilla fuscilabris Mulsant	14	61	95.2 ± 10.81	12.14 ± 2.96
Cycloneda sanguinea Linné	15	21	96.1 ± 10.21	9.80 ± 3.30
Hippodamia convergens Guérin	16	35	78.0 ± 9.90	13.00 ± 4.51

- Many beetles exhibited low value of wing beat frequency (~ 70 – 100 Hz)
- While measuring wing beat frequencies of Ambrosia beetles, the design study of the sound sensor is based on low freq. of acoustic signals.

• Oertli et al. J. ex. Biol. 145, 321-338 (1989)

Auburn University

Fabrication Technology

Similar technique used in semiconductor industry is employed for producing higher performance and economic devices

Auburn University

Stage 1 Economic Analysis: Economic Loss Evaluation at Nursery Scale

- Step 1: Identify costs of beetle identification Determine costs of smart traps versus use of ethanol traps with visual identification methods (e.g. time, microscope, traps, etc.).
- **Step 2:** *Identify costs of treatment* Identify treatment methods, chemicals used, equipment, required labor and associated costs.
- Step 3: Identify costs of crop management Obtain all pertinent management practices, applied inputs and associated economic costs. Obtain detailed management records for experimental plots at each nursery.
- Step 4: Develop cost budgets From cost data, develop flexible enterprise budgets that can be utilized for partial budgeting and economic optimization analyses.

Stage 1 Economic Analysis: Economic Loss Evaluation at Nursery Scale

- **Step 5:** *Estimate response functions* Using experimental data, estimate yield loss response functions as a function of trap identification efficacy and pesticide application rates.
- **Step 6:** Optimal Economic Management Response Develop a math programming model to maximize net returns above variable costs for different nursery enterprises subject to yield loss response, time and other identified resource constraints. Purpose is to identify economically optimal trap management schemes and pesticide rates.
- **Step 7:** Determine the spatial economic impact at the nursery level -Using GPS data collected examine the economic impact spatially across the tested nurseries using the collected data, yield loss response functions, and optimization models from the previous steps.

Summary

- The prototype installed with combined LED and ethanol cues promote the trap efficiency (~ 2.5 times)
- On-going efforts to fabricate sound and MSP sensors were made to produce economic and reliable devices.

Auburn University