Realizing the Potential of Advanced BioFuels

Thomas D. Foust, Ph.D., P.E.
Director,
National Advanced Fuels Consortium

June 14, 2012
Project Objective – Develop cost-effective technologies that supplement petroleum-derived fuels with advanced “drop-in” biofuels that are compatible with today’s transportation infrastructure and are produced in a sustainable manner.

3 year effort - $50M/year

Consortium Partners
Albemarle Corporation
Amyris Biotechnologies
Argonne National Laboratory
BP Products North America Inc.
Catchlight Energy, LLC
Chevron
Colorado School of Mines
General Motors
Honda
Iowa State University
Los Alamos National Laboratory
National Renewable Energy Laboratory
Oakridge National Laboratory
Pall Corporation
RTI International
Teso Company Inc.
University of California, Davis
UOP, LLC
Virent Energy Systems
Washington State University
2011 EIA Crude Oil Price Projections

Figure 5. Average annual world oil prices in three cases, 1980-2035
(real 2010 dollars per barrel)
Marketplace for Renewable Fuels

Need to Create Market Demand for Cellulosic Ethanol

Conventional Gasoline
- E10 - saturated with corn ethanol
- E15 - EPA approved for 2001 and newer cars but not implemented in the field
- E85 – flex fuel vehicles grew but fuel at the stations never materialized

ICBR investors asked to take on market risk as well as new technology risks

Chicken-n-Egg problem between high ethanol fuel blends and vehicles in the market

~ Equivalent to National E25

~ Equivalent to National E20

~ Equivalent to National E15

~ Equivalent to National E10

Billion Gallons

0 5 10 15 20 25 30 35 40

Actual Production

Renewable Fuels Standard (RFS) Targets

Conventional (Starch) Ethanol
Biodiesel
Cellulosic Ethanol
Other Advanced Biofuels
Proposed Fuel Economy Legislation – Current through 2025
Ethanol Can Enable More Efficient Engines

- Higher compression ratio yields higher efficiency
- Above CR of 14 piston ring friction dominates
- CR=14 is optimal
- Current engine CR about 10

- Higher CR would be enabled by HIGHER Octane Number
 - Ethanol has a much higher blending Octane Number than hydrocarbon blendstocks
 - Another advantage of ethanol is cooling effect of vaporization – much greater than hydrocarbon
Ethanol

Ethanol market

- EPA has approved E15 as substantially similar to gasoline for 2001 and newer models
 - Currently be rolled out state by state
 - Car manufacturers need higher octane specially high RON low MON to meet new café standards
 - Mid level ethanol blends are a cost effective manner to achieve this
 - High RON low MON benefits to E25
 - Butanol also good for high RON low MON
 - Likely to start approving models in model year 2012 with more to follow in 2013 and 2014
 - Small engines, pumps and dispensers remain an unresolved issue
 - RFA aggressively working these issues and is strongly committed to E15
 - E85 volumes gaining slightly but still very small as overall percentage of ethanol volumes
 - VETC (ethanol tax credit) phased out on January 1, 2012
 - Effect on EtOH production difficult to ascertain
U.S. Transportation Fuel Demand – gasoline use dropping rapidly

Gasoline (Finished Motor Gasoline – E10) (cars & trucks)

- **126 bgy**
- *Peaked in 2004 at 136 bgy

Diesel (on-road, rail)

- **43 bgy**

Aviation (jet fuel)

- **23 bgy**

Source: Energy Information Agency

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline</td>
<td>126</td>
<td>116</td>
</tr>
<tr>
<td>Diesel</td>
<td>43</td>
<td>52</td>
</tr>
<tr>
<td>Jet fuel</td>
<td>23</td>
<td>27</td>
</tr>
</tbody>
</table>

Products in a Barrel of Crude (gal)

- **Gasoline** - 18.56 gal
- **Jet Fuel** - 4.07 gal
- **Other Products** - 7.01 gal
- **Heavy Fuel Oil (Residual)** - 1.68 gal
- **Liquefied Petroleum Gases (LPG)** - 1.72 gal
- **Other Distillates (heating oil)** - 1.38 gal

Diesel - 10.31 gal
Transportation Energy Use – Light-Duty Vehicles: Conventional Gasoline: Reference Case
Transportation Energy Use – Heavy-Duty Existing Trucks
Diesel: Reference Case
US Refining System Is Built To Meet Gasoline Demand

BP Statistical Review of World Energy June 2005
With all of the technological improvements to gasoline and diesel engines in the past 20 years and what will be required to meet CAFÉ standards, is our current fuels menu optimum for maximizing fuel economy?
US GASOLINE POOL - RON

<table>
<thead>
<tr>
<th>Year</th>
<th>Pool RON</th>
<th>Avg. EtOH %</th>
<th>HC Pool RON</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>93.2</td>
<td>1</td>
<td>92.1</td>
</tr>
<tr>
<td>2000</td>
<td>92.8</td>
<td>1.5</td>
<td>91.0</td>
</tr>
<tr>
<td>2010</td>
<td>92.9</td>
<td>8.6</td>
<td>82.6</td>
</tr>
</tbody>
</table>
US GASOLINE SALES BY GRADE – % OF TOTAL

<table>
<thead>
<tr>
<th>Year</th>
<th>Regular</th>
<th>Mid Grade</th>
<th>Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>69</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>2000</td>
<td>79</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>2010</td>
<td>88</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

Ethanol Prices – April 2012

<table>
<thead>
<tr>
<th></th>
<th>Prices</th>
<th>NL</th>
<th>E85</th>
<th>E10</th>
<th>E15</th>
<th>E30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline</td>
<td>$3.3500</td>
<td>$3.3500</td>
<td>$1.0050</td>
<td>$3.0150</td>
<td>$2.8475</td>
<td>$2.3450</td>
</tr>
<tr>
<td>Ethanol</td>
<td>$2.1300</td>
<td></td>
<td>$1.4910</td>
<td>$0.2130</td>
<td>$0.3195</td>
<td>$0.6390</td>
</tr>
<tr>
<td>Product Cost</td>
<td>$3.3500</td>
<td>$2.4960</td>
<td>$3.2280</td>
<td>$3.1670</td>
<td>$2.9840</td>
<td></td>
</tr>
<tr>
<td>Fed Tax - Gas</td>
<td>$0.1840</td>
<td>$0.1840</td>
<td>$0.1840</td>
<td>$0.1840</td>
<td>$0.1840</td>
<td>$0.1840</td>
</tr>
<tr>
<td>VEETC - Ethanol</td>
<td>$0.0000</td>
<td></td>
<td>$0.0000</td>
<td>$0.0000</td>
<td>$0.0000</td>
<td>$0.0000</td>
</tr>
<tr>
<td>State Tax</td>
<td>$0.2800</td>
<td>$0.2800</td>
<td>$0.2800</td>
<td>$0.2800</td>
<td>$0.2800</td>
<td>$0.2800</td>
</tr>
<tr>
<td>TOTAL COST</td>
<td>$3.8140</td>
<td>$2.9600</td>
<td>$3.6920</td>
<td>$3.6310</td>
<td>$3.4480</td>
<td></td>
</tr>
</tbody>
</table>

Copyright ©2012 Blend Your Own Ethanol Campaign. All Rights Reserved.
Light Duty Vehicle by Fleet Type
TECHNOLOGIES FOR IMPROVING FUEL ECONOMY
and REDUCING PETROLEUM IMPORTS

◆ Partial Hybrids, Hybrids and Plug-in Hybrids
◆ Electrics
◆ Extended Range Electrics
◆ Fuel Cell Vehicles
◆ Biofuels
◆ Alternative Fuels
◆ Low Temperature Combustion
◆ Diesel Engines
◆ Improved SI Engines/Transmissions
Advanced Biofuel Conversion Routes

- **Biomass**
 - Pyrolysis/Liquefaction
 - Methanol Synthesis
 - Fischer-Tropsch Synthesis

- **Sugar**
 - Catalytic Conversion
 - Fermentation with engineered microbes

- **Syngas gasification**
 - Methanol Synthesis
 - Fischer-Tropsch Synthesis

- **Algae growth & oil harvest**
 - Refinery
 - Hydrotreating & Upgrading
 - Gasoline
 - Diesel
 - Jet
Gasification

- Technology fairly well developed
- Classes of gasifiers
 - **Air Blown Gasification** (updraft or downdraft) – low cost and thermally efficient, product gas not well suited for fuel synthesis – high N\textsubscript{2} content
 - **Indirect Gasification** – good thermal efficiency, syngas not diluted with N\textsubscript{2} – product gas relatively high in tars
 - **Direct Gasification** – Good product gas, lower in tars, - high cost of O\textsubscript{2}, lower thermal efficiency, syngas high in CO\textsubscript{2}
 - **Entrained Flow Gasification** – Excellent product gas, essentially no tars – high cost of O\textsubscript{2}, low thermal efficiency, higher capital cost because of increased complexity
Thermodynamics and kinetics of biomass conversion

- Gasification is inherently a lower efficiency process based on thermodynamic analysis.
Challenge - Fuel Synthesis is Process/Capital Intensive

Need to simplify the process to achieve economics

BASE CASE

Syngas → Methanol Synthesis → DME Reactor → Multiple MTG Reactors → Product Separation → LPG, Gasoline, Water

IMPROVED CASE

Syngas → Combined Synthesis Reactors → Product Separation → LPG, Gasoline, Water
Pros/Cons and challenges of gasification routes

Pros

- Good experience base
- Only significant technical challenge is cost and complexity
- Capable of producing high quality diesel and jet fuels
- Chemistry works and is relatively proven

Cons

- Cost is a significant challenge
 - Previous attempts to reduce costs have met with limited success

Challenges

- Reducing capital costs
- High process complexity
Sugar or Soluble Carbon Intermediate Pathway

Pretreatment & Conditioning → Enzyme Production → Enzymatic Hydrolysis → Lignin

Fermentative Cell

Value Add

Aqueous Phase Reforming

Acid Condensation → Gasoline
Condensation & HDO → Jet Fuel
Dehydration & Oligomerization → Diesel

ISOPRENE
ANTI-MALARIAL DRUG

Diesel
Fermentation Pathway

- hydrolysate

YEAST CELL

Mevalonate Pathway

- Farnesene Synthase

Diesel & Chemical Precursor

[1] Cane juice
[2] Fermentation broth
[3] Separations
[4] Purification
Catalytic Pathway

Biomass Fractionation and Pretreatment

Lignocellulosic Materials
Soluble Sugars
Starches

Process Heat

Lignin
C$_1$-C$_4$ Alkanes
C$_2$-C$_6$ Oxygenates

Aqueous Phase Reforming

Hydrogenolysis
Polysaccharides
C$_5$ & C$_6$ Sugars
Furans
Phenolics
Acids

Hydrogenation
Sugar Alcohols

ZSM-5

Base Catalyzed Condensation
HDO

Dehydration
Alkene Oligomerization
Alkene Saturation

Aromatics, Alkanes
Gasoline
Kerosene
Jet Fuel
Diesel

Alkanes

Alkanes
Extracting from lignin via low energy approaches

Lignin is a heterogeneous alkyl-aromatic polymer with labile C-O bonds

Research needs:
- Fractionation process development
- Catalyst and process development for lignin deconstruction
- Catalyst and process development for lignin upgrading to fuels

Potential strategies
- Fractionation: lignin post Prt/EH, upstream fractionation of carbs/lignin
- Deconstruction: base-catalyzed depolymerization, acid hydrolysis, transition metal catalysts
- Upgrading: Retro-Diels Alder, partial ring saturation, selective ring opening, acid oligomerization

Fractionation/ Catalytic Deconstruction

Catalytic Upgrading

C9-C20 hydrocarbons/ Diesel & Jet Fuel Range

Catalytic Upgrading

Heat/Power

Distillation

Product distribution
Pros/Cons and challenges of sugar routes

Pros
- Produces high quality components for diesel and jet – both fermentative and catalytic routes
 - Initial higher value applications
- Builds upon OBP cellulosic ethanol technologies so good building base

Cons
- High capital cost approaches
- Overall yields and efficiencies lower than thermal routes
- Lignin component only used for heat and power at high capital cost

Challenges
- Better organisms – fermentative
- Better catalysts – catalytic
- Lower costs
- Better utilization of lignin
Lipid (Autotrophic/Heterotrophic) Intermediate

- Enzyme Production
- Enzymatic Hydrolysis
- Pretreatment & Conditioning
- Algae
- Yeast or Bacteria
- Fungi
- Fatty Acids
- TAGs
- Reduction/Decarbonylation
- Commodity Chemicals (Ethylene)
- Specialty Chemicals (Carotenoids)
- Algae
- Cyanobacteria
- Photosynthetic Bacteria
- n-Alkanes
- Olefins
- TAGs
- Refinery
- Gasoline
- Diesel
- Jet Fuel
Algal routes to advanced biofuels

Biology and Cultivation

• Algal Strains - Growth, productivity, stability, and resilience
• Cultivation system design
• Temperature control
• Invasion and fouling
• Input requirements
• CO₂, H₂O sources, energy
• Nitrogen and phosphorous
• Siting and resources

Biomass Harvesting and Recovery

• Energy efficient harvesting and dewatering systems
• Biomass extraction and fractionation
• Product purification

Conversion and End-use

• Process optimization
 • Thermochemical
 • Biochemical
• Fuels characteristics
• Co-Products

A nano-membrane filter being developed by a NAABB partner.

A gasifier being used by a NAABB partner to convert algal biomass to fuels.
Pros/Cons and challenges of algal routes

Pros
- Capable of producing high quality fuels
- High yields
- Negates food versus fuel debate
- Does not need fresh water

Cons
- Significant technical risk
- Cost barriers significant and numerous

Challenges
- Cell biology
- Cultivation
- Harvesting and extracting
- Economic uses of cell mass
Bio-Oil Intermediate

Initial Results (NABC data)

Good
- Feasibility tests very positive
- Economics show the potential to be very attractive (< $2.00 gge for refinery integration case)
- Refiners are very interested

Bad
- Products are almost exclusively aromatics mostly in the gasoline range
- Chemistry is very complex and poorly understood making process design dubious
Fast pyrolysis oil is converted to fuels in a 2-step process

The product carbon recovery based on biomass was about 35%
Process is capital intensive
Logistics issue since pyrolysis oil is highly corrosive and unstable
Process may not be scalable or replicable for large volume fuel production without new infrastructure

<table>
<thead>
<tr>
<th>Hydroprocessed Bio-oil (from Mixed Wood)</th>
<th>Petroleum Gasoline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paraffin, wt%</td>
<td>Min</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
</tr>
<tr>
<td>Iso-Paraffin, wt%</td>
<td>16.7</td>
</tr>
<tr>
<td>Olefin, wt%</td>
<td>0.6</td>
</tr>
<tr>
<td>Naphthene, wt%</td>
<td>39.6</td>
</tr>
<tr>
<td>Aromatic, wt%</td>
<td>9.9</td>
</tr>
<tr>
<td>Oxygenate, wt%</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Catalytic Fast Pyrolysis (CFP) Hydropyrolysis (HYP)

Based on Fluidized Catalytic Cracking (FCC) Technology
Pervasive in Petroleum Refining
CFP/HYP Catalyst Impact

Standard Fast Pyrolysis

Catalytic Fast Pyrolysis/Hydropyrolysis

Quality ↑ ↑ Yields ↓ ↓
Hydrothermal Liquefaction

Slow pyrolysis in pH-moderated, pressurized water

Wet biomass → Hydrothermal Liquefaction ~350°C, 200 atm, biomass slurry in water Long residence times

Catalytic upgrading

H₂

solids

Liquid hydrocarbons

Biomass slurry feed (15% solid)

HTL Oil Product (at 25 °C)
Bio-Oil Intermediate Research Needs

Research Needs

- Determine chemistry mechanisms
 - Minimize BTX (aromatics)
 - Form C-C bonds towards diesel and jet fuels (straight and branched chain alkanes)
- Develop and test deoxygenation catalysts
- Test catalyst deactivation and regeneration
- Produce sufficient quantities of oil for refinery integration testing
- Investigate effects of catalytic pyrolysis (effects of alkali metals, etc)
- Test in reactor representative of petroleum refinery FCC reactor

This area has very big promise but significant research needs to be done
Potential Co-Processing Points

Refineries contain many potential insertion points for co-processing of a variety of biomass-derived feedstocks

Hydroprocessing Units
- Typically designed to remove sulfur
- Potentially suitable to deoxygenate triglycerides or other bio-oils

Conversion Units
- Designed to break down larger molecules into smaller ones
- Potentially suitable for upgrading of pyrolysis oils into fuels

Conclusions

• Ethanol future still uncertain
 – Café standards driving to higher compression engines
 – Significant activity in commercialization
 – Butanol also a possibility

• Future is advanced biofuels “drop-in”. Although preliminary results are promising many challenges remain:

 Biomass
 • Yields and costs
 • Lignin utilization
 • Must integrate into future fuel mix need

 Algae
 • Significant technical challenges
 – Cell biology
 – Cultivation
 – Harvesting
 – Cell mass utilization
Biomass for Transportation Deployment

Near Term Impact (< 5 yrs)
- Biochem/Thermochem Cellulosic Ethanol
- Advanced Biofuels From Simple Sugar Feedstocks

Mid Term Impact (5-10 yrs)
- Advanced Biofuels Lignocellulosic Feedstocks
 - Gasoline
 - Diesel
 - Jet Fuel
- Algal Biofuels R&D
 - Gasoline
 - Diesel
 - Jet

Long Term Impact (> 10 yrs)
- 4th Gen Biofuels
 - direct photosynthesis
 - GMO plants
- Battery Electric Vehicles

Biofuels Deployment

Biopower
- Cofiring
- IGCC

Analysis
- Pathway Technoeconomic Analyses
 - Sustainability Analysis
 - Cellulosic ethanol
 - Advanced biofuels
 - Advanced Biofuels Market Analysis
 - 3rd generation
 - 4th generation

Breakthrough Technology Anal.
- direct PS
- Genetically modified plants
Questions?

Biomass for Advancing America
Pros/Cons and challenges of catalytic pyrolysis routes

Pros
• Based on proven technology – FCC technology in petroleum industry
• Low cost – both operating and capital
• Integrates well with petroleum refining

Cons
• Produces only gasoline and only aromatics which are least desirable from a refinery perspective
• Produces a less desirable co-product steam that must be utilized to achieve economics and GHG benefits

Challenges
• Better catalysts
• Shift product ratio to higher percentage of fuel fraction versus co-product portion
• Better understanding of underlying chemistry
U.S. demand is leveling off but world wide demand is rapidly increasing.

Figure 27. World liquids consumption by region and country group, 2007 and 2035
million barrels per day

<table>
<thead>
<tr>
<th>Region</th>
<th>2007</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>14</td>
<td>25</td>
</tr>
<tr>
<td>Non-OECD Asia</td>
<td>16.76</td>
<td>32</td>
</tr>
<tr>
<td>OECD Europe</td>
<td>15</td>
<td>27</td>
</tr>
<tr>
<td>OECD Asia</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Central and South America</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Middle East</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>Non-OECD Europe and Eurasia</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Africa</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
US Situation – future looking better

Figure 11. Total energy production and consumption, 1980-2035 (quadrillion Btu)

- Consumption
- Production
- Net imports

Figure 12. Energy production by fuel, 1980-2035 (quadrillion Btu)

- Natural gas
- Coal
- Liquids
- Nonhydro renewables
- Nuclear
- Hydropower
But…. Nobody likes

• CNG vehicles – short range, safety issues in a crash and trunk taken up by large tanks
• Ethanol – lower mileage, higher food prices plus specialty engine issues
• Small underpowered cars and hybrids
Need

- Better fuel efficient vehicle options
- Better natural gas vehicles and/or better fuels from natural gas – gas to liquids
- Better biofuels
Natural Gas to Liquid Fuels (Gasoline (naptha), Diesel and Jet Fuel)

Fischer-Tropsch Process
Corn Ethanol

- 97% of gasoline used in U.S. is E10
- 14 Billion gallons produced in 2011
- 40% of US corn crop is used for ethanol production
- Ethanol production is the biggest use of corn has now overtaken animal feeding
- Much debate on the impact on food prices but corn prices have doubled over the past decade from historic levels
- No detrimental impact on modern cars (2000 and newer) however can have negative impacts on lean burn, marine or small engines
Cellulosic Ethanol

- Made from plant material not corn and hence does not compete with food
- Environmentalists like it better – lower CO₂ emissions and environmental impacts in general
- Higher cost near-term, lower-cost long-term
- Still ethanol
Ethanol Can Enable More Efficient Engines

- Higher compression ratio yields higher efficiency
- Above CR of 14 piston ring friction dominates
- CR=14 is optimal
- Current engine CR about 10

- Higher CR would be enabled by HIGHER Octane Number
 - Ethanol has a much higher blending Octane Number than hydrocarbon blendstocks
 - Another advantage of ethanol is cooling effect of vaporization – much greater than hydrocarbon
Why not just make gasoline, diesel and jet from biomass

- Gasoline (cars & trucks): 140 bgy
- Diesel (on-road, rail): 43 bgy
- Aviation (jet fuel): 25 bgy
Initial Results

Good
- Feasibility tests very positive
- Economics are superb (< $2.00 gge for refinery integration case)
- Refiners are very interested

Bad
- Products are almost exclusively in the gasoline range
- Chemistry is very complex and poorly understood making process design dubious
Fuels from Algae

Pretreatment & Conditioning → Enzyme Production → Enzymatic Hydrolysis → Algae, Yeast or Bacteria, Fungi

- Fatty Acids
- TAGs

Reduction/Decarbonylation

- Commodity Chemicals (Ethylene)
- Specialty Chemicals (Carotenoids)

Photosynthetic Bacteria → TAGs → n-Alkanes Olefins

Refinery

- Gasoline
- Diesel
- Jet Fuel
Co-Process biomass with petroleum

Six Process Strategies
1) Fermentation of Sugars
2) Catalytic Conversion of Sugars
3) Catalytic Fast Pyrolysis
4) Hydropyrolysis
5) Hydrothermal Liquefaction
6) Syngas to Distillates
Evolution of Cars

1970s Car
- 15.8 mpg
- 136 hp
- 0-60 in 14.2 seconds
- Carbureted
- 3 spd transmission
- Minimal emission controls

2012 Car
- 32.7 mpg
- 192 hp
- 0-60 in 9.5 seconds
- Direct injection
- 6-8 spd transmission
- Emit 95% less pollutants – sophisticated electronic engine management systems
Evolution of Fuels

1970s Refinery
- Distillation only
- Sulfur 1000 ppm
- Minimal specs
- No specs on N levels
- Leaded to bypass octane ratings

2012 Refinery
- Multiple processes
- Sulfur < 15 ppm
- Must blend ethanol, RFS, CAA
- Extensive specifications that vary by region and season
Bio-fuels are actually beneficial to making better fuels

Refineries contain many potential insertion points for co-processing of a variety of biomass-derived feedstocks

Hydroprocessing Units
- Typically designed to remove sulfur
- Potentially suitable to deoxygenate triglycerides or other bio-oils

Conversion Units
- Designed to break down larger molecules into smaller ones
- Potentially suitable for upgrading of pyrolysis oils into fuels

Take away points

• The days of cheap fuels from petroleum are over

• The Middle East controls oil prices
 o Not the President
 o Not Congress
 o Not the oil companies

• US situation is improving
 o Reduce demand
 – More and better fuel efficient cars and trucks
 o Increase supply
 – Offshore drilling in the near term
 – Canadian tar sands
 – Natural gas to liquid fuels
 – Biofuels (gasoline, diesel and jet fuels)

• Ethanol may reach 15-25% of gasoline but E85 is essentially dead