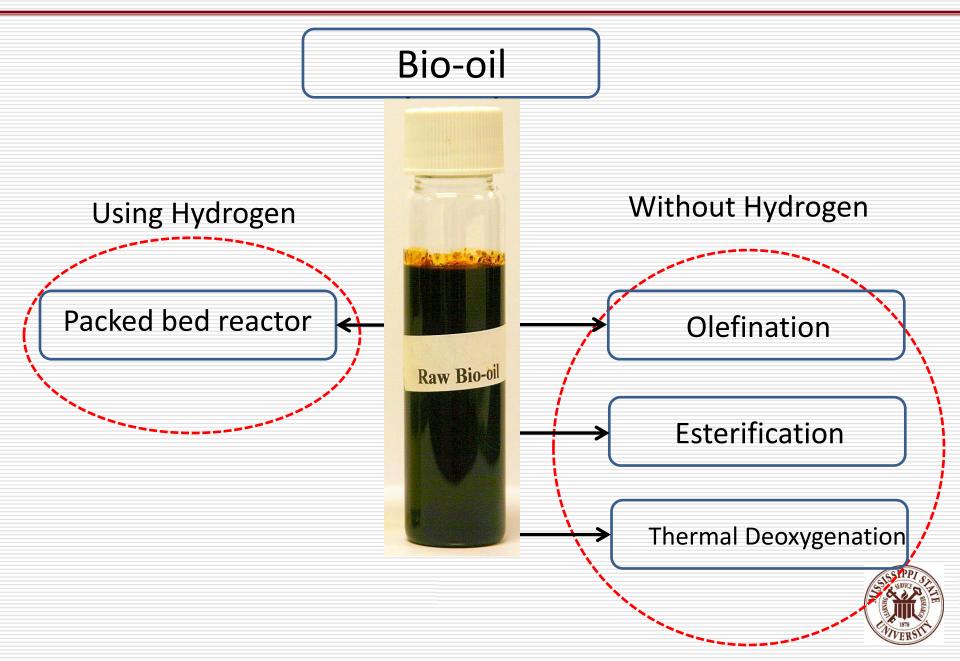
Fast Pyrolysis and Bio-oil Upgrading (Challenges)

Philip H Steele

Venkata K Penmetsa, Jingming Tao, Sathish K.Tanneru and Brian Mitchell

> Forest Products Department Mississippi State University

Bio-oil properties:


40-50% oxygen content is the primary factor causing the negative properties of bio-oil:

- High acidity
- Aging problem
- Immiscibility with petroleum-derived fuels
- Pungent odor
- Low energy density

Bio-oil upgrading:

Hydroprocessing with the MSU continuous packed bed reactor:

	Raw Bio-oil	Hydrocarbons	
Acid value	98.01	13.37	FI
HHV, MJ/kg	16.08	41.31	
Water, %	30.58	1.86	
С	36.17	79.00	HDO Bio-oil
Н	7.84	10.62	
Ν	0.03	0	
0	55.96	10.37	

Bio-oil upgrading via catalytic pyrolysis :

• Catalytic pyrolysis is being investigated by researchers . A hybrid catalytic pyrolysis system at 500 ton-per day is being constructed by Kior in Mississippi. Partially deoxygenated bio-oil is produced by catalytic pyrolysis followed by hydrotreating to produce low-oxygen hydrocarbons.

• Non-hybrid catalytic pyrolysis systems are being investigated by George Huber, Univ. of Mass, and Gas Technology, Incorporated.

	Raw Bio-oil	Boiler Fuel	
Acid value	98.01	19.23	_
HHV, MJ/kg	16.08	34.01	OLEFIN-
Water, %	30.58	1.701	ATED
			OIL
С	36.17	71.06	
Н	7.84	10.0	
Ν	0.03	0.13	
0	55.96	18.81	

Product testing:

• A highly combustible boiler fuel was produced by olefination as the test below indicates:

	Raw Bio-oil	Bio-diesel	
Acid value	98.01	16.70	
HHV, MJ/kg	16.08	36.45	45- ·,
Water, %	30.58	5.3	
С	36.17	78.18	-20-
Н	7.84	9.71	-15
Ν	0.03	0.41	<u>-10</u> <u>-5</u>
0	55.96	11.70	

	Raw Bio-oil	TDO 1 st Stage	
Acid value	98.01	22.86	
HHV, MJ/kg	16.08	37.17	
Water, %	30.58	4.7	
С	36.17	79.05	
Н	7.84	9.22	
N	0.03	0.34	
Ο	55.96	11.39	

Summary:

- Numerous practitioners are attempting to improve the HDO path to production of hydrocarbons from bio-oil. But technical and cost factors (cost of hydrogen and hydrotreater) persist.
- Catalytic pryolysis in a hydrogen atmosphere is being investigated by research organizations and a hybrid system is being commercialized; however, reported yields are not higher than for HDO of liquid bio-oils and the expense for these pressurized systems is relatively high.

Summary:

- A potential path to several fuel types is catalysis without hydrogen. MSU has successfully produced high-energy boiler fuels; sub-transportation ASTM fuels have been produced that require refinement to meet ASTM fuel standards.
- A likely productive future path for researchers is to produce fuels from bio-oil with little, to no, hydrogen treatment. Given time and research this appears a viable goal with favorable economics for the product fuels.