Impacts of Periodic Droughts and Water Use on Strear Flows and Freshwater Mussels in the Lower Flint Rive Basin, SW Georgia

S.W. Golladay, T.K. Muenz and D.W. Hicks

J. W. Jones Ecological Research Center, Newton GA

Study Area

Regional Geology

Flint River Mussel Studies 1950's W.J. Clench and R.D. Turner

-Recognized high diversity of the Apalachicola River Basin

- -Summarized localities of type specimens
- -Noted declines in the Chattahoochee river

Flint River Mussel Studies 1991-1992 J. Brim Box and J.D. Williams

Fig. 6. Average species richness for each hydrologic unit based on the 1991–1992 survey data.

- 134 sites sampled

- 22 species observed

- Kinchafoonee, Muckalee, and Chickasawhatchee Creeks had very high mussel richness (9-16 species)

- Very few mussels observed in the Chattahoochee Basin

Jones Center Studies 1999

- 46 sites on 12 tributaries
- 14,873 mussels
- 19 species found (of 29 historical)
- 3 endangered species

Gulf Moccasinshell

Oval pigtoe

Shiny-rayed Pocketbook

Southwest Georgia Hydrology – 1999-2002

Summer 2000 Drought Severity

Dewatered stream

Anoxic stream

2001 Post Drought Survey

Objectives:

1) Determine the extent of regional changes in mussel assemblages due to the droug

2) Determine stream reaches likely to be adversely affected drought

Site Selection

Criteria for Selection

- 20 sites surveyed
- Previously surveyed in1999
- Previously supported diverse or abundant musse populations
- Represent a range of stream size

Results

Hydrologic and Geologic Classifica

Box Plot of Mussel Abundance

Changes in Mussel Abundan

1999 to 2001

Status of Mussels 1999 to 2001 Common Species

Elliptio complanata

Uniomerus carolinianus

Elliptio crassidens

Villosa vibex

<u>Toxolasma pa</u>

<u>Villosa lie</u>

	1999 (#/site)	2001 (#/site)	
Flowing	226	314	p=0.02
Non-Flowing	181	71	p=0.01

Status of Mussels 1999 to 2001 Endangered Species

- FHIII	

Lampsilis subangulata Sites 11/7

Pleurobema pyrif Sites 5/6

	1999 (#/site)	2001 (#/site)
Flowing	3	6 p=0.2
Non-Flowing	27	2 p=0.1

Status of Mussels 1999 to 2001 Special Concern Species

Elliptio purpurella

Lampsilis claibornensis

Villosa villosa

<u>Quincuncina</u>

Strophitus subvexus

	1999 (#/site)	2001 (#/site)
Flowing	20	22 p=0.6
Non-Flowing	3	1 p=0.7

Potential Human Impacts

Regional land-use 50-60% agriculture and mostly irrigated

Groundwater Permits

Expansion of Irrigation

Data from: Harrison, K.A. and A.W. Tyson. 2001. Irrigation survey for Georgia. Proceedings of Georgia Water Resource Conference.

Climate Analysis

- monthly rainfall from NCDC region 7

 compared pre- and post irrigation annua and seasonal rainfal

- 10 yr running averages for season

Hydrologic Analysis

conserveonline.org

- compared pre- and post irrigation flows (using 1975 a the beginning of irrigation)
- 1, 7, 30 day minimum flows

Long Term Gauging Stations

Rainfall Trends

Regional Rainfall -- Annual

Seasonality

more winter
less summer
rain

Streamflow Trends

Spring Creek

- 46% decline in 1 minimum flows

- 39% decline in 7 minimum flows

- 42% decline in 3 day minimum flow

Ichawaynochaway Creek

- 40% decline in 1 minimum flows
- 31% decline in 7 minimum flows
- 9% decline in 30 minimum flows

Changes in the lower Flint River Basin

- Declining mussel populations
- Increasing isolation of some populations
- Declining minimum daily flows
- Altered seasonality of flows

Questions

"If the biota, in the course of eons, have built something like but do not understand, then who but a fool would discard seemingly useless parts? To keep every cog and wheel is the sign of an intelligent tinkerer."

Aldo Leopold.

Acknowledgements

Funding – R.W. Woodruff Foundation, J.W. Jones Center, and Georgia EPD.

Field Assistance – R. Bambarger, M. Bell, B. Clayton, A. Liner

