Land-Use Impacts on Water Resource Management

Marlon Cook Geological Survey of Alabama

- Population and economic growth result in land-use change that has profound impacts on both ground- and surface-water resources. Climate amplifies these impacts.
- Surface water is impacted by construction, loss of vegetative cover, increased impervious surface, and increased runoff, sedimentation, and contaminant loading.
- Ground water is impacted by loss of recharge, increased use and demand, and increased contamination of shallow aquifers.
- Negative impacts of climate, economic growth and landuse change may be reduced or eliminated by <u>prudent</u> <u>water-resource management</u> based on <u>sound scientific</u> <u>data</u>.

Alabama ranks #10 in states with lost prime farmland to developed land. (Source: Southeast Farm Press)

Annual Cropland Productivity Loss

• Surface Water

Sediment Monitoring

Geological Survey of Alabama Sedimentation Monitoring Sites

Stream Sec

Stream Bed with Bedload Se din

Rolling Sediment

D'Olive Creek Watershed

Cooperators: MBNEP ADCNR

Lightwood Knot
Creek
National Monitoring
Program Project
Monitoring Sites

Cooperators:
ADEM
NRCS

Opp

Before After

4-S Watershed BMP Implementation

Lightwood Knot Creek 3-C Watershed Bedload Sediment

Lightwood Knot Creek 4-S Watershed Bedload Sediment

Results of Statistical Analysis of Water Quality Change

T-Test

- NO_3 as N = 71%
- Fecal C. Bacteria = 14%
- Fecal S. Bacteria = 7% \leftarrow
- T. Suspended Solids =18% ↑
- Bedload Sediment =87%

 √

Regression Analysis

- NO_3 as N = 71%
- Fecal C. Bacteria =11%
- Total Phosphorus = 7% \uparrow
- Fecal S. Bacteria =14% 🕇
- T. Suspended Solids = 18%
- Bedload Sediment = 92%

Geological Survey
of Alabama
Yellow River
Sedimentation
Monitoring Site

Cooperators: CPYRWMA

Yellow River Bedload, Covington County Alabama

Total Sediment Loads

Geological Survey
of Alabama
Gantt-Point A
Sedimentation
Monitoring Sites

Cooperators: ADEM NRCS

Sediment deposition into Point A Reservoir Covington Co. Alabama

Stratification of sediment deposited into Point A Reservoir

Sedimentation into Gantt Reservoir Covington Co. Alabama

Measured total suspended solids and discharge for the post-treatment monitoring period at site GP1.

Estimated pre- and post-treatment suspended sediment loads for site GP2, normalized with respect to discharge.

• Ground Water

Southeast Alabama
Aquifer Stress
and
Future Ground-Water
Development

Cooperators:
CPYRWMA
City of Dothan
City of Enterprise

Southeast Alabama Aquifers

Aquifer	Geologic Series	City Supplied
Watercourse	Holocene and	
Aquifers	Pleistocene	
Miocene	Miocene 2 MY	Brewton
		Chatom
Crystal River	24 MY	Florala
(Floridian)		Geneva
Lisbon		Andalusia
	Eocene	Ft. Rucker
		Dothan
Tallahatta		Andalusia
Hatchetigbee		
Tuscahoma	55 MY	Ft. Rucker
Nanafalia		Andalusia
	iar	Ft. Rucker
	Paleocene	Dothan
Salt Mountain	Paleocene Paleocene	Enterprise
Clayton		Ozark
		Ft. Rucker
	▼	Dothan
Providence	65 MY	Ft. Rucker
Ripley	33	Greenville
		Luverne
		Ft. Rucker
		Troy
Eutaw		Union Springs
		Montgomery
	~	Selma
	Cretaceous	Greensboro
		Demopolis
Tuscaloosa Group		Eufaula
		Troy
		Tuskegee
		Montgomery
		Prattville

Southeast Alabama Projected Residential Water Demand

Date

Residual Drawdown Clayton Aquifer

Future Clayton Aquifer Development

Isopach (thickness) Map of Clayton Aquifer (net feet >75% limestone or sand)

Southeast Alabama Agricultural Water Demand

NRCS, 2003

Date

Hydrograph of Crystal River aquifer irrigation well X-2, Houston County, Alabama.

Where do we go from here?

- Population and economic growth result in land-use changes that may profoundly impact the quantity and quality of our water resources.
- Understanding these complex relationships between land use and water resources empowers us to manage and protect these vital resources while promoting economic growth and improvements in quality of life.
- Just as we now live in a world economy, we also live in an interjurist dictional natural resource setting.
- Development and protection of our water resources requires cooperation of municipal, county, and state governments, state and federal natural resource agencies, and universities and researchers.

