Impact of Soil Aeration on Runoff Characteristics in Dual Purpose No-Till Wheat Systems

Paul DeLaune Texas A&M AgriLife Research - Vernon

Dual Purpose Wheat Systems (graze and gain)

- 6 million wheat acres managed as dual purpose in Texas, Oklahoma, and New Mexico (Taylor, 2010).
- Southern Great Plains:
 - 5% No-till
 - 80% Conventional Till
- No-till adoption in graze and grain systems lower than grain only systems

Grazing and Compaction

- Grazing can:
 - Increase soil compaction
 - Increase the potential for soil erosion
 - Decrease water infiltration
 - Increase Runoff (71% vs 12% of received precip.)
 - Increase losses of N and P via runoff
- Texas High Plains
 - Grazing no-till reduced soil water storage and depressed wheat and sorghum yields.

Questions/Objective

- Does grazing no-till wheat result in increased compaction, decreased infiltration, increased runoff?
- Should long-term no-till wheat be tilled to alleviate compaction concerns?
- Evaluate the impact of tillage, specifically soil aeration, on long-term no-till dual-purpose wheat systems on runoff water quantity and quality.

Materials & Methods

- Smith-Walker Research Unit near Vernon
- Tillage Systems
 - Conventional Till (disking)
 - No-Till
 - Aeration at roller angles of:
 - 0, 5, and 10 degrees
- Grazing System
 - Graze and Grain
 - Graze out

Site History and Grazing

- Clay loam soil
- Converted to no-till wheat in 2001
- Study took place 2009-2011
- Grazing
 - 2009-2010
 - Graze/Grain = Jan 15 to March 1 (11,454 lb ac^{-1})
 - Graze Out = Jan 15 to April 30 (26,172 lb ac⁻¹)
 - 2010-2011
 - Graze/Grain = Drought, no grazing
 - Graze Out = March 15 to April 30 (54,000 lb ac⁻¹)

Tillage and Rainfall Timing

- Tillage treatments implemented September each year
- Runoff events occurred:
 - ✓ Oct 2009 6 wks after tillage, 30 N, 10 P 5 wks prior
 - ✓ June 2010 after wheat harvest, midseason N -18 lb
 - ✓ Sept 2010 20 days after tillage, immediately after N&P (18 lb)
 - ✓ June 2011 after wheat harvest, midseason N -27 lb

Bulk Density (0-4")

Conclusions

- Tillage and grazing did not significantly affect bulk density.
- Aeration was most effective in reducing runoff and nutrient losses when storm event occurred within 20 days of implementation, no longer effective at 6 weeks.
- Graze out plots had higher runoff rates, higher nutrient losses, and lower infiltration rates than graze and grain system.
- Overall, tilling of no-till wheat had a short term effect on runoff characteristics and not all tillage treatments improved these characteristics compared to no-till.
- No-till can increase infiltration and withstand the effects of proper grazing intensities compared with mechanical aeration and disking.
- Economic considerations must also be taken into account prior to tilling no-till wheat systems.

Questions? Paul DeLaune

Project Lead 940-552-9941 x207 pbdelaune@ag.tamu.edu

Appreciation to Texas Wheat Producers Board for project support

Producers Board and Association

Market Development :: Research :: Education :: Legislative Advocacy

