The Effect of Traffic Patterns on Soil Compaction

Alan D. Meijer NC State University Department of Soil Science

Southern Conservation Agricultural Systems Conference, June 25-27 Quincy, FL.

Introduction

Vernon G. James Research & Extension Center

Introduction

- Soil Compaction
- Major problem
 - Physical barrier to roots
 - Reduced water and fertilizer intake.
 - Reduced Aeration
 - Soil Structure Deterioration

Equipment traffic is major cause.

NC STATE UNIVERSITY

Introduction

- Traffic Patterns
 - Up to 90% of land covered by tracks in one year.
 - Up to 90% of compaction occurs in first pass.

Uncontrolled Traffic

Controlled Traffic

Illustrates path of:

Planter, sprayer, anhydrous applicator, tillage Combine

Source: Management Strategies to Minimize and Reduce Soil Compaction. 1999. University of Nebraska, G89-896-A.

Objectives

- 1. To determine the amount of land covered by wheel traffic in a given year.
- 2. To determine the effect of that traffic on soil bulk density.

Materials & Methods

Materials & Methods

- 1. Bulk density samples taken prior to field operations.
- 2. Traffic mapped during growing season, from first operations in spring through harvest.
- 3. Bulk density sampled again in fall, targeting areas of field that received:
 - 1. 0 tracks
 - 2. 1 track
 - 3. 2 tracks
 - 4. 4+ tracks

Materials & Methods GPS

- Used GPS to map the pass of every tractor, combine, and sprayer that travelled over the study fields.
- Farm Works SiteMate software in field.

Materials & Methods Bulk Density

- Used AMS Core Sampler to sample for bulk density at 0-4, 4-8, 8-12, and 12-16 inch depths.
- Samples oven-dried at 105°C for 24h.
- Weighed.
- Bulk density = grams dry soil / volume of sampler. (g/cm³)

Materials & Methods Fields, Cooperators, Cropping Systems

	Field	Cooperator	County	Crop/Tillage System	Soil Type
	P10	Daren Hubers	Hyde	Corn / Conventional*	Ponzer muck
	L1	Joseph Leggett	Bertie	Cotton / Strip	Conetoe and Tarboro loamy sands
	L2	Joseph Leggett	Bertie	Corn / Conventional	Conetoe and Tarboro loamy sands
*Conventional tillage, but for organic prod					ut for organic production

Materials & Methods Fields L1, L2 – Bertie County

Materials & Methods Field P10 – Hyde County

Materials & Methods State UNIVERSITY Using GIS to Create Tracks

Results Initial Soil Bulk Density

NC STATE UNIVERSITY

NC STATE UNIVERSITY

P10 – Hyde County	L1 – Bertie County	L2 – Bertie County
Crop: Organic Corn	Crop: Cotton (Strip Till)	Crop: Corn (Conv. Till)
Chicken Litter Application	Strip-Till	Disk
Dynadrive	Plant	Bed
Field Cultivation	Roundup-Orthene	Plant
Plant	Herbicide (Sequence)	Nitrogen Application
Spring Tooth Harrow I	Pix Application I	Herbicide (Roundup)
Spring Tooth Harrow II	Nitrogen Application	Combine
Spring Tooth Harrow III	Pix Application II	
Danish Tyne Cultivation I	Hood Spray	
Danish Tyne Cultivation II	Defoliation	
Combine	Cotton Picker	
Auger Cart (Grain wagon)	Boll Buggy	
Total: 11 Events	Total: 11 Events	Total: 6 Events

NC STATE UNIVERSITY

Accumulation of Tracks During Season

NC STATE UNIVERSITY

Area Tracked x No. of tracks Field P10

NC STATE UNIVERSITY

Area Tracked x No. of Tracks Field L1

NC STATE UNIVERSITY

Area Tracked x No. of Tracks Field L2

NC STATE UNIVERSITY

Mean bulk density at depths at all locations in 2006.

Conclusions

- Bulk densities ranged from 0.4 1.1 g/cm³ at P10 and from 1.4 – 1.7 g/cm³ at L1 and L2.
- 65-85% of field surface area tracked.
- Bulk density increased significantly with level of traffic at P10Middle at the 0-4" depth.
- Bulk density increased significantly with level of traffic at L1 at the 0-4" depth as well.
- Bulk density was significantly different at different locations within fields at the same level of traffic.

