Assessment of Equipment Performance and Energy Requirements for the Development of Tillage Managements Strategies

C. Kichler, J. Fulton, W. Zech, T. McDondald, C. Brodbeck Auburn University

> R. Raper USDA ARS NSDL

Presentation Overview

- Motivation
- Data acquisition system
- Multiple-depth test
- Multiple-implement tillage frequency
- Conclusions

The "Bottom Line"

Areas to save

Equipment managementTillage practices

How to save

Equipment performance data
 Get specific

 Evaluate equipment performance to provide a basis for improved efficiency and money saving management decisions

Research Objectives

Develop a data acquisition system to monitor tractor performance parameters.

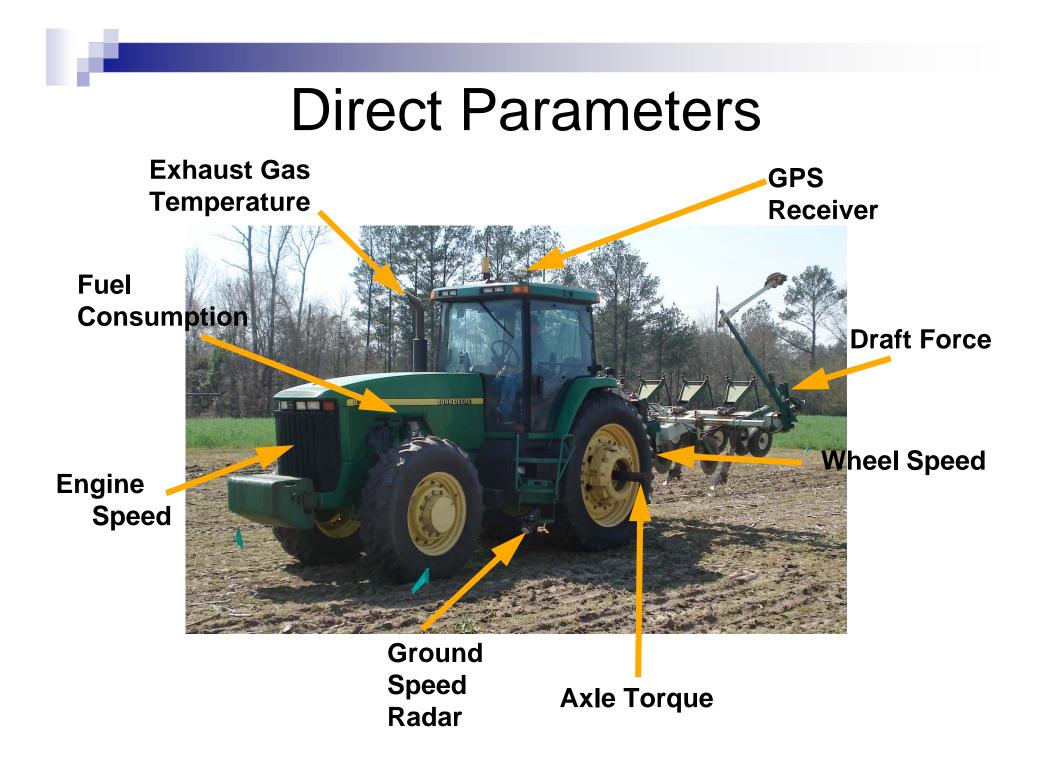
Collect and analyze spatially linked tractor performance and draft data for different site-specific experiments.

Site-Specific Tillage

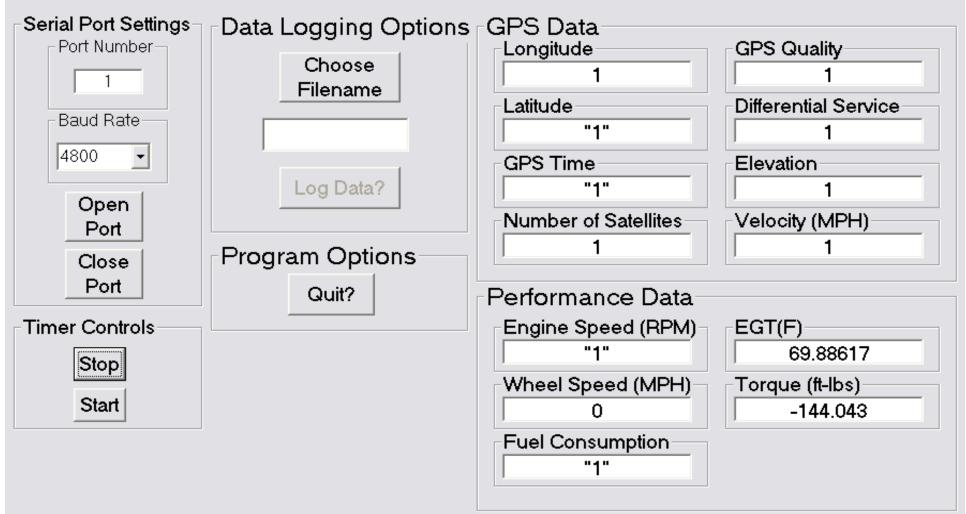
Depth of hardpan determined

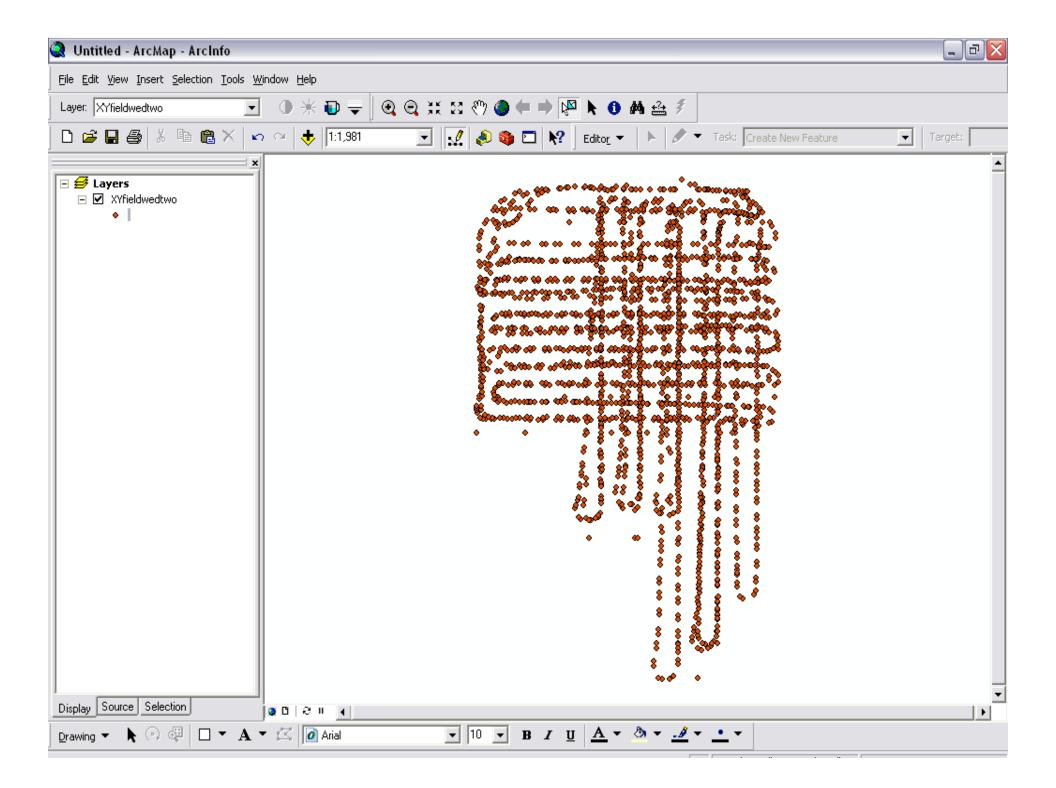
- Electrical conductivity
- □ Cone index
- Tillage performed by zone
- Controlled energy utilization
 - Reduce draft loads
 - Reduce fuel usage
 - Reduce equipment wear

Data Acquisition


Computer based

Graphical User Interface (GUI)
 Logging capabilities


- D/A and counter modules
- Sensors
 - 3-D draft loads
 - □ Fuel consumption



Tractor Performance and Location

Biosystems Engineering

Multiple Depth Experiment

Equipment

KMC in-row subsoiler
 JD 8300 MFWD

Data

- Draft forces
 Fuel consumption
- Methods
 - Shallow 9 in.
 - □ Deep 14 in.
 - 4 treatments / 4 replications
 - 🗆 3 mph

Multiple Depth Experiment

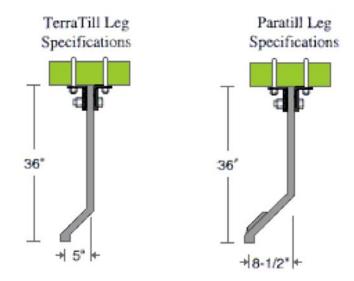
Depth	Tractmont	Draft	(lbs)	Fuel (gal/acre)		
(in.)	Treatment	Mean*	S.D.	Mean*	S.D.	
9	1	2,461 ^b	80	0.93 ^b	0.10	
9	2	2,176 ^b	75	0.89 ^b	0.14	
14	3	5,129 ^a	357	1.11 ^a	0.13	
14	4	5,039 ^a	172	1.07 ^a	0.15	

Note: *Means with similar letters in columns have no statistical differences ($\alpha = 0.05$).

Multiple Depth Experiment

- Energy Savings
 120% draft increase
 20% fuel consumption increase
 Site-specific tillage
 Less energy with shallower depth
 - □ Extensive savings over large areas

Economic Savings


- **\$2.80 / gallon**
- 1000 acres
- 0% 17% savings for 9 in. depth

Tillage Depth	Fuel	Cost
9 in.	910 gal.	\$2548
14 in.	1090 gal.	\$3052

Multiple Implement Experiment

- JD 8300 MFWD @ 3 mph
- 13 in. tillage depth
- 9 treatments / 4 replications
 - 3 tillage rotations
 - Annually, biennial, triennial
 - 3 implements
 - KMC in-row subsoiler
 - Bigham Brothers TerraTill®
 - Bigham Brothers Paratill®
- Parameters measured
 - Fuel Consumption
 - Draft Forces
 - □ Axle Torque

TerraTill® vs. Paratill®

Courtesy: Bigham Brothers.

Multiple Implement Experiment

Implement	TRT	Rotation (yrs.)	Fuel Usage		Draft		Torque	
			(gal/acre)		(lbs)		(ft-lbs)	
			Mean*	S.D.	Mean*	S.D.	Mean*	S.D.
KMC	1	1	0.91 ^c	0.2	2,882 ^d	265	6,023 ^d	1,448
	2	2	0.93 ^c	0.2	3,075 ^{cd}	190	6,405 ^{cd}	538
	3	3	0.97 ^{bc}	0.2	3,685 ^c	324	7,325 ^{bc}	581
Paratill®	4	1	1.01 ^b	0.2	4,854 ^b	530	7,626 ^{bc}	1,573
	5	2	1.01 ^b	0.2	4,655 ^b	531	8,142 ^b	999
	6	3	1.09 ^a	0.3	5,953 ^a	793	9,516 ^a	620
TerraTill®	7	1	1.11 ^a	0.0	5,683 ^a	148	9,713 ^a	507
	8	2	1.11 ^a	0.1	5,625 ^a	117	9,675 ^a	597
	9	3	1.13 ^a	0.1	5,975 ^a	404	10,066 ^a	229

Note: *Means with similar letters in columns have no statistical differences ($\alpha = 0.05$).

Multiple Implement Experiment

- KMC in-row subsoiler
 - Increase in triennial rotation
 - 6% fuel consumption
 - 24% draft forces
 - 18% axle torque
- Bigham Brothers Paratill®
 - Increase in triennial rotation
 - 8% fuel consumption
 - 25% draft force
 - 21% axle torque
- Bigham Brothers TerraTill®

No significant differences within group

Economics

- **\$2.80 / gallon**
- 1000 acres
- 8% savings with Paratill
- 16% savings with KMC

Implement	Fuel (gallons)	Cost
KMC	940	\$2632
Paratill	1040	\$2912
TerraTill	1120	\$3136

Summary

- Real-time or spatial tractor performance can be used to effectively manage equipment sitespecifically.
- Site-specific tillage can save energy and minimize costs.
 - Two-depth experiment
 - 120% draft increase
 - 20% fuel consumption increase
 - Multiple implement experiment
 - TerraTill® highest values
 - KMC Lowest values
 - Triennial increase in energy required for tillage.

Thank You

ALL AND AND AND AND A MARKED AND A DATE OF A D

Corey Kichler Auburn University

