R.N.Gallaher¹

ABSTRACT

Growth and yield of corn (Zea mays L.) are influenced hy N nutrition and crop management schemes. The objective of this study was to determine the N fertilizer requirements for corn following four different winter crops in four different experiments with conventional and no-tillage management. Five management regimes (conventional tillage after winter crop for forage, conventional tillage using winter crop for green manure, no-tillage using winter crop for a mulch, no-tillage after winter crop for forage, and conventional tillage fallow) were employed as main treatments in a randomized complete block design with five levels of inorganic N (0, 67, 134, 201, and 268 kg N ha⁻¹ as split plots. Each experiment was replicated four times on an Arredondo fine sand (sandy, siliceous, thermic Grossarenic Paleudult) near Gainesville, Florida. No-tillage corn from the no-tillage mulch treatment reached the Nsufficiency level of 2.70% or higher with only 67 kg N ha-1 when using crimson clover (Trifolium incarnatum L.) or lupine (Lupinus angustifolius L) as cover crops. Reduction of fertilizer recommendations by 67 to 134 kg N ha⁻¹ may be possible for irrigated corn, depending upon the tillage system and cover crop. Implications for reductions in pollution of water with N fertilizer are obvious if these findings continue to prove accurate.

INTRODUCTION

Nitrogen is the single most important fertilizer input and is required in the largest quantities for crop production (Olson and Sander, 1988). A corn crop has a sufficient level of N if the concentration in the ear leaf at early silking and tasseling is between 2.70% and 4.00% (Jones et al., 1991). Legumes are one source of organic N that can be sacrificed for succeeding crops as a cover crop in double-cropping systems (Gallaher and Eylands, 1985; Huntington et al., 1985; Reeves, 1992). Cover crops, especially rye <u>(Secale cerea</u>le L.), not only provide cover to protect the soil against erosion, hut also provide a good mulch to compete against weeds, moderate soil temperature, and conserve water for succeeding crops, such as no-tillage corn (Gallaher, 1977). Cover crops can be killed before or after planting the succeeding crop using no-tillage management (Gallaher, 1980; Gallaher, 1986). The objective of this study was to determine the N fertilizer requirements for corn following four different winter crops in four different experiments with conventional and no-tillage management.

MATERIALS AND METHODS

The studies were conducted at the University of Florida Green Acres Agronomy Farm near Gainesville on an Arredondo fine sand (94% sand, 2% silt, 4% clay). Winter crops that preceded the corn in each of the four experiments were Wrens Aburzzi' rye, hairy vetch (Vicia villosa L. Roth.), 'Tift Blue' lupine and Five management regimes 'Dixie' crimson clover. (conventional tillage after winter crop for forage, conventional tillage using winter crop for green manure, no-tillage using winter crop for a mulch, notillage after winter crop for forage, and conventional tillage fallow) were employed as main treatments in a randomized complete block design with five levels of inorganic N (0, 67, 134, 201, and 268 kg N ha⁻¹) as split plots. Each experiment was replicated four times.

Pioneer Brand 3320 temperate corn was planted with an in-row subsoil no-tillage planter in early March 1992 to achieve a final population of 76,500 plants ha⁻¹. Carbofuran, atrazine, metolachlor, and gramoxone plus X77 surfactant were applied at planting at labeled rates for control of insects and weeds. Water was applied by overhead sprinkler. From tasseling through rapid grain fill, 3 cm of water was applied every 4 days, depending upon rainfall. Additional fertilizer was broadcast at planting according to soil test recommendations.

Sampling for ear leaf N and yield was taken from the center two rows of the four-row plots. Ear leaf samples were collected at early tasseling and silking. Leaf samples were dried at 70 C in a forced air oven, ground to pass a 2-mm stainless steel screen in a Wiley mill, and stored in air-tight plastic bags. Micro-Kjeldahl techniques were used to determine leaf N levels (Gallaher et al., 1975; Gallaher et al., 1976). Grain yields were determined at black layer.

¹ Dept. of Agronomy, Inst. of Food and Agricultural Sciences, University of Florida, Gainesville.

Data was subjected to routine analysis of variance (ANOVA) for a split-plot experimental design. Duncan's new multiple range and LSD tests were used to separate tillage and N treatment means, respectively. Main treatment, sub-treatment, or interaction means were separated appropriately when significance occurred at the 0.05 level of probability.

RESULTS AND DISCUSSION

The Florida Extension Service recommends 268 kg N ha⁻¹ for irrigated corn seeded for 74,000 plants ha⁻¹, which were the conditions for these experiments. It was observed that for most tillage systems, corn after rye reached the 2.70% N or higher sufficiency level (Jones et al., 1991) with only 201 kg N ha⁻¹ (Table 1). Heavy infestation of root-knot nematodes (Meloidogyne incognita, [Kofoid and White] Chitwood) reduced the growth of vetch and is likely the reason for corn response to inorganic N fertilizer to be no better than that after the rye cover crop. The no-tillage mulch treatment resulted in the 2.70% N or higher level with only 67 kg N ha⁻¹ in the corn after crimson clover and corn after lupine experiments. The benefits of cover crops in obtaining the lowest level of the N sufficiency range (2.70%) ranked in order of greatest to least benefit would be lupine > crimson clover > rye = vetch under the conditions of these experiments.

Grain yield responded to inorganic N in a quadratic manner in all experiments and tended to level off at about 201 kg N ha⁻¹ (Table 2). All tillage systems gave similar responses for corn after rye and crimson clover, but fallow treatments had lower corn yields than the four cover crop treatments after vetch and lupine. Irrigation likely eliminated some of the mulching benefits from the cover crops, but also, likely provided an environment for better N use efficiency. These experiments show that the use of cover crops could reduce the N recommendation for irrigated corn by 67 to 134 kg ha⁻¹ depending upon the tillage system and cover crop.

ACKNOWLEDGEMENTS

The author appreciates the technical assistance of James R Chichester and Howard C. Palmer, Agronomy Department, University of Florida and the cooperation of Dr. Robert G. (Bob) Palmer, Pioneer Hi-Bred Int. Grants from Pioneer Hi-Bred Int. and the Tennessee Valley Authority partially supported this research.

LITERATURE CITED

Gallaher, R.N. 1977. Soil moisture and yield of crops when no-till planted in rye. Soil Sci. Soc. Amer. J. 41:145-147.

Gallaher, R.N. 1980. Value of residues, mulches, or sods in cropping systems. Multiple Cropping Minimum Tillage Special Publication MMT-5. Fla. Coop. Extn. Service, Inst. Food & Agr. Sci., Univ. of Florida, Gainesville, FL 32611.

Gallaher, R.N. 1986. Studies of chemical combinations and rates to convert a living crimson clover cover crop to a mulch for no-tillage planting of summer crops. Agron. Res. Rpt. AY-86-07. Agronomy Dept., Inst. Food & Agr. Sci., Univ. of Florida, Gainesville, FL 32611.

Gallaher, R.N. and VJ. Eylands. 1985. Green manure cropping systems and benefits. Agronomy Research Report AY-86-07. Agronomy Department, Inst. Food & Agr. Sci., Univ. dFlorida, Gainesville, FL 32611.

Gallaher, R.N., C.O. Weldon, and F.C. Boswell. 1976. A semiautomated procedure for total N in plant and soil samples. Soil Sci. Soc. Amer. J. 40:887-889.

Gallaher, R.N., C.O. Weldon, and J.G. Futral. 1975. An aluminum block digester for plant and soil analysis. Soil Sci. Soc. Amer. Proc. 39:803-806.

Huntington, T.G., J.H. Grove, and W.W. Frye. 1985. Release and recovery of nitrogen from winter annual cover crops in no-till corn production. Comm. Soil Sci. Plant Anal. 16(2):193-211.

Jones, J.B, Jr., H.A. Mills, and B. Wolf. 1991. Plant Analysis Handbook. Micro-Macro Publishing, Inc., Athens, Georgia.

Olson, RA. and D.H. Sander. 1988. Corn production. pp. 639-686. *In* G.F. Sprague and J.W. Dudley (Eds.). Corn and Corn Improvement. Number 18 in the Agronomy series. American Soc. of Agron., Inc, Crop Sci. Soc. of Amer., Inc., and Soil Sci. Soc. Amer, Madison, Wisconsin.

Reeves, D.W. 1992. Nitrogen management of tropical corn in reseeding crimson clover conservation-tillage system. pp. 11-14. *In* M.D. Mullen and B.N. Duck (Eds.) Proceedings 1992 Southern Conservation Tillage Conference, University of Tennessee Agricultural Experiment Station, Knoxville, Tennessee, July 21-23, 1992. Special Publication 92-01.

		Nitrog	en level (kq	ha ⁻¹)				
<u>Tillage†</u>	0	67	134	201	268	Avq		
	Comp offer Dec							
	<u>_</u>			er kye		▶ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩		
CT-F	2.38	2.05	2.64	2.86‡	3.16	2.62a		
CT-GM	2.19	2.01	2.56	3 .01	3.07	2.56a		
NT-M	2.47	2.39	2.37	2.91	3.18	2.66a		
NT-F	2.25	1.86	2.22	2.42	2.96	2.34a		
Fallow	1.77	1.87	2.14	2.14	3.01	2.31a		
Avg	2.21y	2.032	2.38x	2.79w	3.07v			
	CV=10.42%	LSD=0.16	Interaction	was not sign:	lficant			
	*********		Corn afte	r Vetch				
CT-F	1.70	2.45	2.56	2.89	3.00	2.528		
CT-GM	1.96	2.11	2.43	2.10	2.93	2.43a		
NT – M	2.01	2.51	2.57	2.59	3.15	2.57a		
NT-F	1.19	2.06	2.37	2.84	3.02	2.44a		
Fallow	1.33	1.83	2.31	2.66	2.97	2.22 b		
Avg	1.782	2.19y	2.45x	2.74w	3.01v			
	CV=10.12%	LSD=0.15	Interaction	was not sign	ificant			
			Corn after Cr	imson Clover				
CT-F	1.86	2.53	2.62	2.95	3.10	2.61 b		
CT-GM	2.53	2.62	2.11	2.98	3.23	2.83a		
NT-M	1.87	2.82	2.74	2.91	2.99	2.66ab		
NT-F	1.64	2.52	2.52	2.73	3.22	2.53 b		
Fallow	1.71	2.39	2.75	3.10	3.16	2.62 b		
Avg	1.92y	2.57x	2.68x		2.93w	3.14v		
	CV=11.88% LSD=0.20 Interaction was not significant							
			corn afte	er Lupine				
CT-F	2.40x a	2.72w a	b 2.80vw.a	3.04w a	3.06v	a 2.80		
CT-GM	2.21x a	2.64w a	b 2.83vw a	3.11v a	3.10v	a 2.78		
NT-M	2.24 2	2.79vw a	2.76w a	3.03vw a	3.07v	a 2.78		
NT-F	1.85x h	2.44	b 2.69w a	3.12v =	3,21v	a 2.66		
Fallow	1.64y b	1.97x	c 2.64w a	2.96 v a	3.10v	a 2.46		
Avg	2.07	2.51	2.75	3.05	3.11			
	CV=7.89% LSD=0.30 Interaction was significant							

Fable 1.	Corn ear leaf N (%)	affected by cover	crop-tillage
	management and N fer	rtilizer in 1992.	

†CT-F=Conventional tillage using winter crops for forage; CT-GM=Conventional tillage using winter crops for green manure; NT-M=No-tillage using winter crops for mulch; NT-F=No-tillage using winter crops for forage; Fallow=Conventional tillage with no winter crop. Values in columns among tillage treatments not followed by the same letter (a,b,c,d,e) are significantly different at the 0.05 level of probability according to Duncan's multiple range test. Values in rows among N levels not followed by the same letter (v,w,x,y,z) are significantly different at the 0.05 level of probability according to LSD. Nitrogen sufficiency range should be between 2.70% to 4.00% (Jones et al., 1991).

*Bold values show lowest N fertilizer required to obtain at least 2.70% N.

Nitrogen level (kg ha ⁻¹)									
Tillage†	0	67		134	201		268		Avg
	g m ⁻²								
	Corn after Rye								
CT-F	241	597		879	1136		1112		795a
CT-GM	180	649		838	999		1118		757a
NT-M	236	721		834	1146		1170		801a
NT-F	238	595		782	1111		983		742a
Fallow	134	525		751	837		1063		662a
Avg	207 y	617x		817w	1046v		1069v		
	cV=15.52%	LSD=73	Int	araction wa	as not si	gnif:	icant		
	Corn after Vetch								
CT-F	371	679		878	1022		1071		804a
CT-GM	364	637		783	921		1090		759a
NT-M	356	672		824	968		1082		780a
NT-F	335	621		836	948		1013		750a
Fallow	165	564		780	993		1129		726 b
Avg	318z	635y		820x	971w		1077 v		
	CV=12.30% LSD=59 Interaction was not significant								
			- Cor	n after Cri	mson Clov	er			
CT-F	454	771		1098	1331		1317		994a
CT-GM	511	840		988	1325		1302		993a
NT-M	447	787		1052	1325		1292		981a
NT-F	366	719		978	1263		1225		910a
Fallow	286	731		961	1194		1415		917a
Avg	413y	769x		1015w	1287v		13 10 v		
	CV=15.03%	LSD=91	Int	ceraction wa	as not si	gnif:	icant		
				Corn after	Lupine -				
CT-F	938y a	1093xv	a	1189wx ab	1357vw	ab	1402v	a	1196
CT-GM	734v bc	993x	a	1164wx b	1323vw	ab	1439v	a	1131
NT-M	819x ab	1038w	a	1363v a	1475v	a	1451v	a	1229
NT-F	620x c	997w	a	1250v ab	1375v	ab	1411v	a	1131
Fallow	440z d	661y	b	986x 0	c 1218w	b	1412v	a	943
Avg	710	956		1190	1350		1423		
-	CV=10.75%	LSD=171	Int	eraction wa	as signif	icant			

Table 2. Corn grain yield (15.5% moisture) affected by cover crop-tillage management and N fertilizer in 1992.

⁺CT-F=Conventional tillage using winter crops for forage; CT-GM=Conventional tillage using winter crops for green manure; NT-M=No-tillage using winter crops for mulch; NT-F=No-tillage using winter crops for forage; Fallow=Conventional tillage with no winter crop. Values in columns among tillage treatments not followed by the same letter (a,b,c,d,e) are significantly different at the 0.05 level of probability according to Duncan's multiple range test. Values in rows among N levels not followed by the same letter (v,w,x,Y,z) are significantly different at the 0.05 level of probability according to ESD.