Wheat Straw Management, Variety Selection, and Row Spacing for Double-cropped Soybean Production

H.J. Mascagni¹, T.C. Keisling², E.D. Vories³, Mike May⁴, and L.R. Oliver⁵

INTRODUCTION

Growers in Arkansas double-cropalmost all the wheat acreage with soybeans. The most accepted practice has been to bum the wheat straw, disk and plant. State laws that were passed in 1990 making a grower liable for automobile accidents caused many growers to begin investigating alternatives to burning wheat straw. Federal clear air standards will make burning of wheat straw illegal if enforced.

In recent years there have been unsubstantiated reports that growing wheat on raised beds results in increased yields. Other research has shown that wheat straw residues can be detrimental to soybean production.

Experiments were initiated in fall of 1989 to evaluate different stubble management and tillage practices used in wheat planted on flat or raised seedbeds.

MATERIALS AND METHODS

Experimental sites were selected at two Arkansas locations: Northeast Research and Extension Center (NEREC), Keiser; and the Cotton Branch Experiment Station (CBES), Marianna. Experimental details are given in Tables 1 and 2. Seedbed preparation consisted of bedded (on 38-in. centers) and flat for wheat and five different stubble management treatments (Table 3) for the double-cropped soybean. The experimental design was a split-split-plot. Rainfall and other weather data were recorded at the local experiment station weather station. Soil moisture measurements were taken at stand establishment for soybean. Soybean canopy development data were taken during late R3 or early R4 growth stages on the soybean.

RESULTS AND DISCUSSION

Wheat was planted in the fall on flat and on raised 38-in.-spaced seedbeds at Keiser and Marianna. The wheat at Marianna died in spots as a result of planting too deep, but the remainder as well as that from replanting generated enough straw for the subsequent stubble management test.

Soybean data were collected at NEREC and the CBES in 1990. Data collected earlier on canopy development showed that narrowing the rows to 19 in. resulted in good canopy closure at maturity on most treatments. For example, at NEREC the gap was 2 and 25 in. between canopies for 19- and 38-in.-row spacings,

Table 1.	Soil	classification	of
experimen	tal si	ltes.	

Site	Year	Soil Series
CBES	1990	Memphis silt loam
	1991	Calloway-Loring complex
NEREC	1990-91	Sharkey silty clay

¹Formerly, Assistant Professor of Agronomy, located *a*: Keiser, *AR*. Currently Assistant Professor of Agronomy located at St. Joseph, LA, ²Professor of Agronomy located at Marianna, AR; 3Assistant Professor of Biology and Agricultural Engineering, located at Keiser, *AR*; ⁴formerly Research Associate Professor, located at Hope, *AR*, currently Associate Director of Research, American Soybean Association, St. Louis, MO; and ⁵Professor of Agronomy located at Fayetteville, *AR*-

Location	Year	Variety	Planting Date	Harvest Date
CBES	1990	Asgrow 5403	6/17/90	10/30/90
		Lloyd	6/17/90	11/8/90
	1991	Asgrow 5403		
		Lloyd		
NEREC	1990	Asgrow 5403	6/16/90	10/27/90
		Lloyd	6/16/90	11/4/90
	1991	Asgrow 5403	6/19/91	10/23/91
		Lloyd	6/19/91	11/11/91

Table 2, Planting and harvest dates, planting rates, and varietal information.

respectively. Corresponding gaps were 2 and 18 in. at CBES. The canopy developed essentially the same regardless of the soybean variety or the stubble management treatment. It was obvious from observing the plots that differences in soil resulted in areas of lesser canopy development and growth. This nonuniform development suggests that wen closer row spacing could be advantageous to grain yields, especially in a production field.

Soybtan grain yields showed a strong response to either burning or leaving the straw, row spacing and variety. At NEREC (Tables 4 and 5), grain yields ranged from 14 to 42 and 22 to 41 bu/acre in 1990 and 1991, respectively. The best yield was obtained with burned straw, narrow rows and a group V soybean variety. At CBES (Tables 6 and 7), grain yields ranged from 9 to 27 and 11 to 45 bu/acre in 1990 and 1991, respectively. The best yield was obtained by incorporating the straw and planting narrow rows. The only commonality between the two locations for increasing yield was narrow rows.

The straw load at NEREC in 1990 was very large compared to that at CBES. The day after planting there was a rain in excess of 3 in. at CBES. Disking in the straw allowed these CBES plots to store this water instead of it running off as surface drainage. A similar rainfall pattern occurred in 1991 at the CBES.

These results reflect various contributions arising from straw management, seedbed preparation, varietal selection, and row spicing. These data show that the best selection of cultural practices depends to some extent on the soil type being cultivated. These data were subjected to component analysis in an attempt to assign quantitative values to each cultural component. In this manner, the relative importance of the components can be compared. The results of the component analysis are given

Table 3. treatments soybean a	s used fo	r doubl	e-cropped
	Seedb	ed prep	aration
Straw turning	Bedded	Flat	Flat- disked
	T	reatmen	t #
Yes	1	3	
No	2	4	5
_			

¹ NEREC = Northeast Research and Extension Center, Keiser, Arkansas; CEES = Cotton Branch Experiment Station, Marianna, Arkansas.

Straw management	Row spacing	<u>Bed</u> Asgrow	<u>ded</u> Lloyd	<u>Fl</u> Asgrow		<u>Flat &</u> Asgrow		x
	in.		• • • • • • • • • •		bu/acre			-
Burned	19 38	42 24	25 29	35 27	35 24	Burned	Mean	34 26 30
Left	19 38	26 15	24 15	20 14	24 18	22 15 Non-Bu	20 16 rned Wean	23 16 29
						19-in. Spacin		29
						38-in. Spacin		21
	x	27 Bedded 25		24 Flat M 25	25 ean			

Table 4. Double-cropped soybean yields following different stubble management treatments in 1990 at Keiser, Arkansas.

Table 5. Double-cropped soybean yields following different stubble management treatments in 1991 at Keiser, Arkansas.

Straw management	Row spacing	<u>Bed</u> Asgrow		<u> </u>		Asgrow	Lloyd	x
	in.	•••••	• • • • • • • • • •		bu/acre-			*
Burned	19 38	34 33	30 30	36 36	33 26	Burned	Mean	33 31 32
Left	19 38	35 28	28 23	41 24	32 22	37 32 Non-Bu:	30 25 rned Mean	34 26 30
						19-in. Spacin		34
						38-in. Spacin		29
	x	33 Bedded 31		34 Flat M 31	28 Mean			

in Table 8. Note the importance of row spacing in 1991 varied with straw management. Also, the effect of wheat stubble removal is different on the two soil types. The importance of preplant tillage may be exhausted because of the large rainfall events at planting.

Straw management	Row spacing	<u>Bed</u> Asgrow	ded Lloyd	<u> </u>		<u>Flat &</u> Asgrow		x
	in.	** - ** - ** - **			bu/acre-			
Burned	19 38	16 14	22 13	9 10	19 14	 Burned	Mean	17 13 15
Left	19 38	22 11	23 11	15 11	22 18		27 23 rned Mean	23 15 19
						19-in. Spacing 38-in. Spacing	g Mean Row	20 14
	x	16 Bedded 1 17		11 Flat Me 15	18 ' ean			11

Table 6. Double-cropped soybean yields following different stubble management treatments in 1990 at Marianna, Arkansas.

Table 7. Double-cropped soybean yields following different stubble management treatments in 1991 at Marianna, Arkansas.

Straw management	Row spacing	<u>Bed</u> Asgrow	<u>ded</u> Lloyd	<u> </u>		Flat & Asgrow		x
	in.				bu/acre			•
Burned	19 38	30 11	23 11	40 24	21 10	Burned	Mean	29 14 22
Left	19 38	45 32	18 24	26 20	14 14	28 24 Non-Bui	29 22 rned Mean	27 23 25
						19-in. Spacing	-	28
						38-in. Spacing	Row g Mean '	19
	x	30 Bedded 1 25		28 Flat M 22	15 Iean	***		

Budget analysis for 1991 indicate that at CBESa two-to-ten fold change iprofitability occurs with variety selection. Only about a twofold change in profitability occurs with straw management and row spacing at NEREC. Variety selection only changed profitability at

		Loca	tion	
	CE	BES	NEREC	
Component	Burn	Leave	Burn	Leave
		bu	A.1	
1990				
Base yield	9	9	15	15
Straw management	0	4	11	ο
Preplant tillage	0	7	0	0
Variety selection	4(VI)	4(VI)	0	ο
Spacing (19 inch)	66	66	8	8
Projected yield	19	30	34	23
Measured yield	22	27	33	26
1991			i -	
Base yield	14	14	24	24
Straw management	0	8	4	о
Preplant tillage	0	0	0	0
Variety selection	9(V)	9(V)	6 (V)	6(V)
Spacing (19 inch)	14	4	2	8
Projected yield	38	36	35	37
Measured yield	35	33	35	38

Table 8. Yield component analysis for double-cropped soybeans.

most two fold. The influence of row spacing and straw management were similar to those obtained at CBES.

CONCLUSIONS

As a result of this study it can be concluded that the effect of leaving wheat straw can be detrimental or beneficial on the subsequent soybean crop. Utilizing narrow rows consistently increased profitability of double cropped beans. Selecting the best variety is the most important factor affecting profitability.