A Decade of Progress in Conservation Tillage in the South Carolina Coastal Plain

W.J. Busscher*, R.E. Sojka, and D.L. Karlen

Abstract
Conservation tillage (CT) in the South Carolina Coastal Plain began in earnest with development of in-row subsoil systems capable of planting into heavy plant residues. Problems associated with this development included reducing water loss from cover crops, improving stand establishment, assessing nutrient and water management requirements, determining optimal subsoiling strategies, understanding long term effects of CT on soil properties, effects of crop residue removal, and the interaction of CT tillage systems with pests and beneficial organisms. A concerted effort was initiated to study these interactions at the Coastal Plains Soil and Water Conservation Research Center in Florence, SC since the late 1970’s. The findings of these studies published to date are summarized in this paper.

Introduction
Conservation tillage (CT) will be a key component of continued southern agricultural expansion (17). In the South Carolina Coastal Plain initial adoption of CT was impeded by problems associated with root penetration of the dense eluviated (E) soil horizons (11). Furthermore, dramatic increases in water infiltration and fertilizer retention, seen with CT in the hilly Piedmont, or in states like Kentucky, did not occur in the flat, sandy Coastal Plain. Success came only after an integral in-row subsoil/planting implement was developed (16). The Superseeder allowed planting into crop residues or living mulches that were controlled with broad spectrum herbicides (paraquat or glyphosate). With initial rooting and weed problems solved, extensive applied and basic research was initiated at the USDA-ARS Coastal Plains Research Center to extend understanding of CT principles and their applications in the region

Review
Soil Water Content. Initial research focused on cover-crop water use because the CT system being promoted was spring planting of corn (Zea may L.) or soybean (Glycine max (L. Merr.) into a fall-planted rye (Secale cereale L.) cover crop. The rye, whose grain had little cash value, was often grazed in winter and the killed with paraquat at spring planting. The rye canopy abated soil loss from intense Spring rains but also severely desiccated the soil profile by evapotranspiration (ET) (9, 12). This often reduced corn yield, but had no negative effect on full-season, determinate soybean yield. The occurrence of more CT problems with corn than soybean was not anticipated from research in other regions (29) but was a consistent year-to-year response in the Coastal Plain (9, 12).

Initial studies attributed poor corn yield in CT plots to erratic emergence and slow early-season growth (24). The retarded plants (“corn weeds”) robbed water and nutrients but remained barren. Low soil temperature caused similar problems at more northern latitudes (15), but this was not true in the Coastal Plain where temperature at 2- and 6-in depths were never more than 2°F different for conventional and CT seedbeds. Water was hypothesized as the most limiting factor because many Coastal Plain Ultisols retain less than 4 in. of plant available water per 3 ft of profile (1). Furthermore, even though surface residues can conserve several days equivalent ET by reducing soil evaporation during the growing season, this gradual benefit did not overcome early-season profile depletion and growth retardation in corn.

Determinate soybean yields were not reduced by cover cropping or CT, if full canopy cover occurred by flowering. If prolonged drought occurred in soybean during the reproductive period, CT increased yields slightly compared with conventional tillage, depending upon the timing of the dry period relative to length of the reproductive period. An effective management solution to the problem of cover crop water use was to kill the cover crop 2 to 3 wk before planting corn or soybean. This halted soil water extraction, providing an opportunity for soil profile recharge (9, 12, 20).

One approach to eliminating high soil strength involves managing soil water content. However, to overcome strength limitations for the high bulk densities of typical Coastal Plain soils risks maintaining water contents which limit root oxygen availability (10). Recent work with sweet corn showed that the approach can work, but only with a high level of management (7).

Subsoiling. Another applied CT study showed that for South Carolina Coastal Plain soils, in-row subsoiling and irrigation resulted in additive yield benefits for corn (6), even though water was supplied by irrigation. This occurred because sandy surface soils allowed N, K, S, and B to leach to the Bt horizon (23). Subsoiling facilitated deeper and earlier root penetration which promoted more efficient use of these nutrients from the B horizon where they occur in greater abundance, see Figure 1. In-row subsoilers were also used for direct fertilizer placement behind the subsoil shanks without requiring knives or disks on which surface trash is easily entangled (25). This produced yields equivalent to traditional 2 in. by 2 in. placement.

Energy costs in the late 1970’s scoured farmers to question the need for annual subsoiling. The persistence of soil disruption was evaluated for several deep tillage methods (4). In-row subsoiling was more effective than disking, chiseling, and mold-board plowing for reducing soil strength to the B horizon which has a higher clay content and water

1W.J. Busscher, R.W. Sojka, and D.L. Karlen are Research Soil Scientists with the USDA-Agricultural Research Service (ARS). Contribution of the USA-ARD Coastal Plains Soil and Water Conservation Research Center, P.O. Box 3039, Florence, SC, 29502-3039; the USDA-ARS Soil and Water Management Research Unit, Route I, 3973 North, 3600 East, Kimberly, ID 83341; and the National Soil Tilth Laboratory, 2150 Pammel Drive, Ames, IA 50011; in cooperation with the South Carolina Agric. Exp. Sta., Clemson. S.C. 29634. *CorrespondingAuthor.

2Mention of trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the USDA or the S.C. Agr. Exp. Sta. and does not imply its approval to the exclusion of other products or vendors that may also be suitable.
the Coastal Plain, several implements became available for annual slit outyielded standard in-row subsoiled plots after 2 yr of slitting (22).

As in-row subsoiling became more universally adopted in the Coastal Plain, several implements became available for use in CT. Though the deep disruption patterns for the Brown-Harden Superseeder, the Tye Paratill, and the Kelly No-till System and their draft requirements varied (T.H. Garner, personal communication), they all shattered the E horizon to non restricting cone indices. Despite differences in the overall soil profile strengths (see Table 1), yield differences among plots treated with the implements were not significant (2). Another promising tool was described which slits shallow tillage pans (13). Here, a thin blade cuts a 0.15 in wide slit (about the size of a macropore) through the hard layer. Crop roots stabilize the slit and maintain it for several years. Where the layer of high strength is deeper, this blade is attached to the bottom of a short subsoil shank, using less horsepower than unaided deeper shanks. These slits have been found 3 yr after they were cut. Plots that were disked plots in April (b) and August (d). Some remnants of deep tillage from previous years can be seen in the disked plot.

Table 1. Mean profile soil strengths for disked and minimum tillage plots subsoiled with the Superseeder (SS), Paratill (PT) and Kelly (KE).

<table>
<thead>
<tr>
<th>Residue Mgmt</th>
<th>Implement</th>
<th>SS</th>
<th>PT</th>
<th>KE Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disked</td>
<td>6.18</td>
<td>5.68</td>
<td>5.22</td>
<td>5.69</td>
</tr>
<tr>
<td>Mintill</td>
<td>5.48</td>
<td>5.58</td>
<td>5.40</td>
<td>5.49</td>
</tr>
<tr>
<td>Mean</td>
<td>5.83</td>
<td>5.63</td>
<td>5.31</td>
<td></td>
</tr>
</tbody>
</table>

Soil Biota. In addition to physical, chemical, and environmental aspects of CT pest management techniques were also unknown. Crop residue removal and tillage affected four nematode species (Meloidogyne incognita, Scutellonema brachyurum, Pratylenchus scribneri, and Paratrichodorus christiei) differently (14). Meloidogyne incognita and P. christiei populations were not significantly affected by tillage, but S. brachyurum populations were highest in CT treatments where crop residue was not removed. In contrast, S. brachyurum populations were lowest in CT plots where 90% of the crop residues were removed or incorporated. In insect studies emergence of Heliothis species was reduced by tillage. Compaction without tillage stabilized insect burrows; compaction after tillage sealed the burrows and damaged the pupae (26, 27). Therefore, less intensive tillage treatments had greater emergence.

Conservation tillage also affects the environment of beneficial organisms. The success of soybean depends greatly on providing a suitable environment for the symbiotic interaction of soybean and Bradyrhizobium japonicum. Despite subtle tillage x strain x cultivar interactions that affected nodular occupancy and N2 fixation by specific cultivar and strain combinations, yield was not affected (19). In a related greenhouse experiment in which understory surfaces were varied independently from soil properties, early stem growth was greater for a straw-covered surface than for a bare surface, but nodulation was unaffected (18).

For sandy Coastal Plain soils, increased organic matter can improve both water and nutrient retention, enhancing productivity. Long-term effects of CT on several soil-test parameters were examined after eight years. In the upper 8 in, there was a trend toward, but not a significant increase of, CT Mehlich I soil test values over disked treatments. There was, however, an increase of organic carbon over the eight years from 0.5 to 1.0% for the disked treatment and from 0.5 to 1.2% for CT (21).
Conclusion

The Coastal Plains Soil and Water Conservation Research Center in Florence, SC exerted a concentrated effort at understanding the advantages and shortcomings of CT for that region of the country. This included the interaction of CT with water loss from cover crops, stand establishment, water and nutrient management, soil strength management through deep tillage or intensively managed irrigation, crop residue removal, long term effects on soil properties, and pests and beneficial organisms. Understanding these effects on conservation tillage has helped make CT a more viable management alternative in the SC Coastal Plain.

Literature Cited


---, R.E. Sojka, and D.L. Karlen. 1984b. Conservation tillage for soybean production in the U.S. Southeastern Coastal Plain. Soil & Tillage Res. 4:531-541


Threadgill, E.D. 1982. Residual tillage effects as determined by cone index. Trans. ASAE.