CIRCULATION AND VITAMIN AND MINERALS

VITAMIN K

1. Discovery of Vitamin K

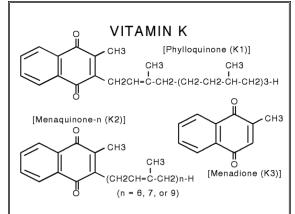
- A. The process of discovery & extensive study of "anti-hemorrhagic" nutrient may represent the best illustration of the formula for a "success" in the field of nutrition!
- B. Steps involved:

1) Observations:

- a) Experimental diets & signs of "malnutrition" in the animal?
- b) Accurate description of main features of pathological changes!
- 2) Testing of different classes of natural foods for prevention or cure of lesions.
- 3) Preparation of crude extracts from a "protective" food, and testing those extracts.
- 4) Further investigation of "curative" extracts/concentrates:
 - a) Separation of extracts into several constituents.
 - b) Determination of the value of fractions for prevention/cure of lesions by feeding experiments.
 - c) Identification of the species of molecule responsible for prevention/cure.
- 5) Determination of distribution of the dietary factor in natural or derived foods by feeding experiments.
- 6) Synthesis of the "factor!"

2. Introduction

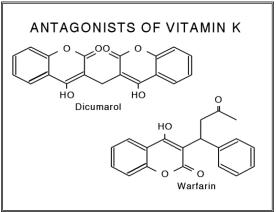
- A. History: [See Maynard et al. (1979), McDowell (1989) & others]
 - 1) Henrik Dam (1929, Denmark):
 - a) Fed chickens a low-fat diet to determine their ability to synthesize cholesterol.
 - b) Chickens were anemic & developed subcutaneous & intermuscular hemorrhages.
 - Hemorrhagic signs were also reported by others using diets containing "ether-extracted" fish meal (McFarlene et al., 1931).
 - 2) Investigations by others found that:
 - a) The curative factor was a "fat soluble," and hemorrhagic signs can be prevented by feeding "unextracted" fish meal.
 - b) "Known" fat-soluble vitamins at that time (A, D & E) or other physiologically active compounds were not effective in prevention/cure.


- 3) Dam (1935):
 - a) Proposed that the anti-hemorrhagic factor to be classified as a new fat-soluble vitamin.
 - b) He called it "vitamin K" (from the word "Koagulation," which is Danish word for "coagulation").
 - (• Received the Novel prize for his discovery.)
- 4) In 1935, Almquist & Stockstad:
 - a) Independently reported that ether extracts of alfalfa cured the hemorrhagic condition.
 - b) Pointed out that the microbial action in fish meal & bran preparation could lead to a development of anti-hemorrhagic activity.
 - Actually, they discovered vitamins K1 and K2 in 1928, but the submission for publication was delayed & then the paper was rejected!

B. General:

- 1) The last fat-soluble vitamin to be discovered.
- 2) Unlike other fat-soluble vitamins, its function may be limited to a normal blood-clotting mechanism.
 - Vitamin K-dependent proteins have been discovered recently, thus, vitamin K may have other roles!
- 3) Previously referred to as the "coagulation vitamin," "anti-hemorrhagic vitamin" and "prothrombin factor."
- 4) Can be synthesized by intestinal microorganisms, but deficiency signs have been observed under field conditions.
- 5) Birds (and to a lesser degree, pigs) are susceptible to deficiency.

3. Structures, Properties, and Assay


- A. Three forms of vitamin K: (Adapted & redrawn from Martin et al., 1983)
 - Vitamin K a generic term for a homologous group of vitamins consisting of 2-methyl-1,4-naphthoquinone derivatives, commonly called "menadione."

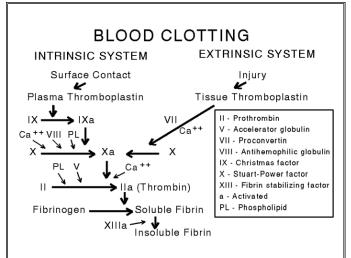
2) K_1 = extracted from plants, K_2 = from materials that had undergone bacterial fermentation & K_3 = synthetic menadione.

- B. Characteristics:
 - 1) A viscous, golden yellow oil.
 - 2) The vitamin in natural sources is fat-soluble & stable to heat, but labile to oxidation, alkali, strong acids, light and irradiation.
 - 3) Some synthetic products are water soluble:
 - a) Menadione sodium bisulfite (MSB).
 - b) Menadione sodium bisulfite complex (MSBC):
 - (1) With excess Na bisulfite, MSB crystallizes as a complex (additional mole of Na bisulfite).
 - (2) Highly stable in diets & being used widely.
 - c) Menadione pyridinol bisulfite (MPB) is formed by the addition of dimethyl-pyridinol.
 - All these have roughly equal biological activity on the molar basis.
- C. Assay:
 - 1) "Classic" bioassay uses whole-blood clotting time of the chick raised on a vitamin K deficient diet.
 - 2) Can be analyzed by a variety of color reactions or by direct spectroscopy.
 - 3) \uparrow interest in the use of HPLC (sensitive, specific & accurate) in recent years.
- D. Vitamin K antagonists:
 - "Dicumarol & Warfarin:" (Adapted & redrawn from McDowell, 1989)
 - 1) Dicumarol

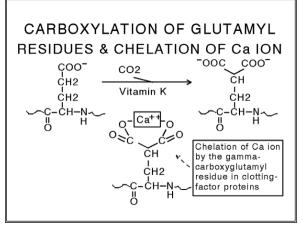
[3,3'-methyl-bis-(4-hydroxycoumarin)] produced by mold & combines with a proenzyme to prevent formation of the active enzyme.

- Being used as a clinical agent for "anticoagulant" therapy (e.g., to prevent intravascular blood clots).
- 2) Warfarin [3-(α-acetonylbenzyl)-4-hydroxycoumarin] a synthetic form of dicumarol (being used successfully to ↓ K-dependent clotting factors for a long time).

- Also, being widely used as a rodenticide, but > 10% of a random population of rats are now resistant to Warfarin, ∴ there is a need for developing more active compounds!
- 3) Many others vitamin K antagonists exist e.g., Bromodifenacoum, 2-phenyl-1,3-indandione, chloro-K, tetrachloropyridinol, etc.


4. Metabolism

- A. Biosynthesis:
 - 1) Animals are not cable of synthesizing 2-methyl-1,4-naphthoquinone ring needed for the vitamin K activity, thus unable to synthesize this vitamin.
 - 2) The biosynthetic pathway is active in plants and many microorganisms.
 - 3) Although a vitamin K deficiency is relatively rare in humans because of microbial biosynthesis, it is fairly common among newborns.
- B. Absorption:
 - 1) Absorbed in association with dietary fats, and requires bile salts & pancreatic juice for the formation of "mixed micelle."
 - 2) Absorbed from the proximal portion of the SI into the lymphatic system.
 - 3) The rate & efficiency may differ among various forms of vitamin K:
 - a) Mode:
 - (1) Phylloquinone by the active transport.
 - (2) Menaquinone by the passive noncarrier-mediated process.
 - (3) Menadione is a water soluble, thus can be absorbed satisfactory from low-fat diets.
 - b) The efficiency ranges from 10 to 70%:
 - (1) Menadione may be completely absorbed, but a retention rate may be very poor - menadione must be converted to the biologically active form to have its effect!
 - (2) The opposite might be true for phylloquinone, i.e., $\approx 50\%$ absorption rate, but a relatively higher retention rate.
- C. Tissue deposition/excretion:
 - In terms of alleviating deficiency signs of vitamin K, the biosynthesis and efficiency of absorption might be more important than the body storage.
 - 1) "Phylloquinone" is concentrated and retained in the liver, but it does not have a long retention time in the liver A half-life of ≈ 17 h in rats.


- "Menadione" is widely distributed in all tissues, but it's rapidly metabolized & excreted. (Three different urinary conjugates, phosphate, sulfate & glucuronide, have been identified.)
 - Studies to elucidate/explore metabolic pathways for phylloquinone or menaquinone have not been conducted extensively!
- 3) Injected phylloquinone is mostly excreted in the feces e.g., 20% in the urine & 40-50% in the feces via the bile in humans.

5. Functions

- A. Vitamin K is involved in the post-ribosomal modification of several blood clotting factors, which are essential for the synthesis/activation of factor II (prothrombin), factor VII (proconvertin), factor IX (thromboplastin) & factor X (Stuart factor).
- B. Blood clotting: (Adapted & redrawn from McDowell, 1989)

- 1) These proteins are synthesized in the liver as inactive precursors.
- 2) Other vitamin K-dependent factors:
 - a) "Protein C" is not a procoagulant, but rather functions to inactivate the cofactor proteins & shut down the overall reaction.
 - b) Also, protein S, protein Z, and protein M, but their function(s) ???
- C. Activation of factors: (Adapted & redrawn from Martin et al., 1983)
 - 1) Carboxylation of specific glutamyl residues by "vitamin K-dependent" carboxylase.
 - γ-Carboxyglutamyl (Gla) residues chelate Ca ions, which are essential for the blood clotting mechanism.
- D. γ-Carboxyglutamyl residues:

1) Other vitamin K-dependent proteins have been shown to be present in the bone, kidney, lung, placenta, skin, spleen, etc.

- 2) No clear understanding of the function of those proteins, but may indicate that vitamin K has some other functions e.g.:
 - a) Osteocalcin (found in the embryonic chick bone & rat bone matrix at the beginning of mineralization) may be involved in the bone formation?
 - b) Proteins found in the skin may be involved in the Ca metabolism in the skin?

6. Deficiency Signs

- Essentially, an impairment of blood coagulation!
 - 1) Low prothrombin levels (factor II).
 - 2) Increased blood clotting time.
 - 3) Hemorrhaging Subcutaneous & internal hemorrhages in severe cases.
 - 4) Anemia.

7. Requirements & Sources

- A. Most species:
 - 1) Usually, met by feed/food sources & microbial synthesis in the hind gut, but the rate of biosynthesis & efficiency of absorption can influence the status!
 - 2) Possible exceptions:
 - a) The use of sulfonamides & other antibiotics, which can ↓ microbial synthesis of vitamin K. (Also, antibiotics can affect the synthesis of B-vitamins!)
 - b) Molds in feeds can result in the production of antagonists such as "dicumarol."
 - c) Limited access to feces e.g., the use of slotted floors and cages.
 - 3) As an insurance, diets are usually supplemented.

B. Requirements: (NRC & RDA)

Animal	mg/kg or µg/d
Poultry (NRC, 1984):	
Chickens & broilers	0.5
Turkeys	0.8-1.0
Swine (NRC, 1998):	
All classes	0.5
Horses (NRC, 1989)	No estimate
Cats, adults	0.1
Dogs, growing	1.0
Fish	0.5-1.0
Rats, all classes	0.05
Humans, µg/d (RDA, 1989):	
< 1 yr	5-10
1-10 yr	15-30
Males	45-80

Females	45-65
Cattle, sheep, horse & goats	Not established

- C. Fish Quantitative requirements have not been established:
 - 1) Intestinal synthesis of vitamin K has not been fully evaluated in fish.
 - 2) Channel catfish & trout Need vitamin K for normal blood coagulation, but growth rate is not affected by dietary deletion of the vitamin.
 - 3) 0.5 to 1 mg of menadione/kg may be sufficient for fingerling trout, and 10 mg/kg has been suggested for trout & salmon.
 - 4) Fish meal & alfalfa are good source of vitamin K.
- D. Possible reasons for \uparrow needs for vitamin K in swine in recent years?
 - 1) Increased use of grain-soy-based diets, i.e., less use of other ingredients, which may contain vitamin K.
 - 2) The use of solvent-extracted oil-seed meals (less K vs. expeller).
 - 3) Increased incidence of hemorrhagic gastric ulcers, which are associated with genetics, stress, processing of grains/feeds, etc.
 - 4) Increased use of antibiotics.
 - 5) Molds in feeds.
 - 6) Reduced opportunity for coprophagy.
 - 7) Increased productivity, which may increase the need for vitamin K (& other vitamins).
- E. Sources:
 - 1) Water-soluble menadione (K₃) salts e.g., menadione Na bisulfite (MSB), menadione Na bisulfite complex (MSBC) & menadione dimethyl-pyrimidinol bisulfite (MPB).
 - 2) Activity of these supplements \approx 50, 33, and 45% of menadione for MSB, MSBC & MPB, respectively.
 - 3) Stability of MSBC & MPB in a vitamin-TM premix (% activity):

Item	1/2 mo	1 mo	3 mo	6 mo
MSBC	80	64	21	0
MPB	81	65	23	0

4) Vitamin K content of foods/feedstuffs: (McDowell, 1989)

Source	ppm (as fed)
Alfalfa hay, sun cured	19.4
Alfalfa dehy	14.2
Barley, corn, sorghum	0.2
Cabbage	4.0
Carrots	0.1
Eggs	0.2
Fish meal	2.2

Animal Nutrition Handbook	Section 10: Circulation	Page 365
Liver, cattle		1-2
Liver, swine		4-8
Meat, lean		1-2
Milk, cattle		0.02
Milk, human		0.2
Spinach		6.0
Tomato		4.0

8. Toxicity

- A. "Natural" forms (phylloquinone & menaquinone) are generally nontoxic at very high dosage levels.
- B. "Menadione" compounds can be toxic to humans, rabbits, dogs and mice in excessive amounts may result in anemia, acute renal failure and death.
- C. Upper safe levels menadione can be ingested as much as 1,000 times the dietary requirement with no adverse effects.

IRON

1. Introduction

A. General:

- 1) Has been used as medicinal agents for centuries e.g., the ancient Greeks, Egyptians and Hindus prescribed Fe as a treatment for a general weakness, diarrhea, and constipation.
- 2) By the 17th century, the role of Fe in blood formation became apparent, i.e., as a constituent of Hb, Fe plays a central role in life processes.
- 3) Relatively high incidence of iron-deficiency anemia being observed in human populations (including in those affluent countries):

Country	% of cases with anemia ^a
Israel:	
Pregnant	47
Nonpregnant	29
Males	13.6
India:	
Pregnant	80.0
Nonpregnant	64.3
Mexico:	
Pregnant	26.6
Nonpregnant	11.7
Males	.9

^aBased on Hb concentration, i.e., < 13 g for adult males, < 12 g for nonpregnant females & < 11 g/dl for pregnant females (NRC, 1979).

• Indicates the importance of considering dietary Fe as a "marginally adequate" or "borderline" nutrient for humans.

B. Distribution:

- 1) Occurs as a iron-porphyrin nucleus, heme:
 - a) Not only in Hb, but also in Mb, cytochromes, peroxidase, catalase & other enzymes Hb & Mb account for $\approx 3/4$ of body Fe.
 - b) A constituent of oxygen carriers and oxidation catalysts or enzymes.
- 2) Fe content in organs and tissues of mammals:

Fissue	ue mg/100 ml or 10	
Whole blood	20-45	
Spleen	20-40	
Liver	10-20	
Kidneys	4-6	
Heart	4-8	
Skeletal muscle	1.5-3.0	
Brain	2.0-2.5	
Bones	3.5-4.0	

3) In the human body:

Item	g
Hemoglobin	3.00
Cytochromes, catalase, siderophilin	0.01
Ferritin & hemosiderin	0.70
Muscular Fe:	
Mb	0.15
Non-heme Fe	0.50

2. Absorption, Metabolism, and Excretion

A. Absorption:

- 1) "Fe complexes" are split by HCl & pepsin, and ferric Fe (Fe⁺⁺⁺) is reduced to ferrous Fe (Fe⁺⁺) by reducing agents.
- 2) Absorption occurs throughout the GI tract, but the duodenum & jejunum are major sites:
 - a) Absorbed in three stages (1) uptake by the wall, (2) transit through the mucosal cell, and (3) passage through the serosal membrane into the blood.
 - b) Generally, Fe is poorly absorbed:

(1) \approx 5-10% of intake might be common in the adult.

(2) The efficiency of absorption \uparrow in the deficient state:

- (a) \approx 7-10% in a "normal" state, but \uparrow to 80% in the Fe-deficient state in rats.
- (b) \approx 2-20% for normal subjects & 20-60% for anemic human subjects.
- 3) Absorption is facilitated by reducing substances or antioxidants in foods/feeds such as ascorbate, tocopherol, -SH groups of S-amino acids & glutathione.
- 4) Absorption is inhibited by organic acids (e.g., oxalate, citrate & phytate), chelating agents, phosphates, etc.
- 5) Fe competes with Cu, Mn, Pb & Cd for absorption sites, ∴ high levels of these minerals ↓ Fe absorption.
- Summary of Fe metabolism – See the figure (adapted & redrawn from McDowell (1992).
- B. Transport/storage:
 - 1) Transferrin:
 - a) Ferrous Fe entering blood is quickly oxidized to the ferric state.
 - b) Fe⁺⁺⁺ form complexes with

IRON ABSORPTION & TRANSPORT Duodenum Lower SI Colon Fe +++ Fe++ Fe++ Lumen Mucosal [0] Cells Apoferritin 🖌 Ferritin Blood (Plasma Fe 2 Fe⁺⁺⁺ + Transferrin . transport) Body cells Bone marrow Utilization & Storage Hemoglobin Reticulo-endo Hb catabolism Death of cells thelial systems Fe Storage of liver, spleen bone marrow Urine, Bile, Feces

transferrin immediately, and transported through the body.

- c) Transferrin links various cycles of the Fe metabolism, and thus regulating body Fe distribution.
- 2) Stored as:
 - a) Ferritin [nonheme protein (globulin) contains ≈ 20% Fe] & hemosiderin (contain little protein & as much as 35% Fe) are present throughout the body, but especially high in the liver.
 - b) Transferrin in serum.
 - c) Uteroferrin in placenta.
 - d) Lactoferrin in milk.
- C. Excretion:
 - 1) Very little Fe is lost from the body:
 - a) e.g., Fe released from Hb \rightarrow liver \rightarrow bile \rightarrow reabsorption \rightarrow reutilization.
 - b) Exceptions menstruation, injury, etc.

- 2) Fe is excreted in the feces & urine, but also a continual loss via sweat, hair & nails.
- 3) Most of Fe present in the feces is unabsorbed dietary Fe.

D. In fish?:

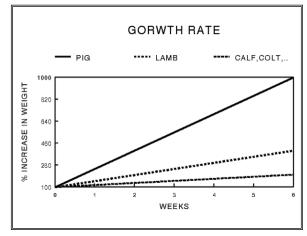
- 1) Relatively little information on absorption/metabolism of Fe, but probably similar to other species.
- 2) Absorption of Fe takes place across the gill, but the intestinal mucosa is the major site.
- 3) Dissolved Fe (e.g., ferrous sulfate) in water may serve as a source in certain warm-water fish, but may precipitate out as ferric hydroxide.

3. Biological Functions and Supplementation in General

A. Specific function (Georgievskii, 1982):

Compounds (1° source)	Function	
Heme compounds:		
Hb (erythrocytes)	Oxygen transport	
Mb (skeletal muscles)	Oxygen transport	
Cytochrome oxidase (heart muscle)	Electron transfer	
Cytochrome C (heart muscle)	Electron transfer	
Catalase (horse erythrocytes)	Peroxide decomposition	
Peroxidase (horse radish)	Peroxide decomposition	
Nonheme compounds:	-	
Succinate dehydrogenase (heart)	Electron transfer	
Reduced NAD dehydrogenase (heart)	Electron transfer	
Xanthine oxidase (milk)	Electron transfer	
and many others.		

B. Supplementation in general?


- 1) Natural feed ingredients usually supply enough Fe to meet the postweaning requirements of pigs and poultry.
- 2) The Fe-deficiency is unlikely to occur under practical conditions in fish.
- 3) "Borderline nutrient" for humans, and Fe-deficient anemia is common.
- 4) Very important for newborn or suckling piglets.

4. Iron Deficiency Anemia in Nursing Pigs

A. Reasons?

1) Low body storage in newborn pigs - Born with only about 40-50 mg of Fe, and with the daily requirement of 7-16 mg/day, deplete rapidly!

- Low Fe content in sow's milk About
 2 ppm in colostrum & 1 ppm in milk, thus piglets receive only about 1 mg/day from milk!
- Rapid growth rate vs. other species -See the figure.
- 4) No access to iron sources (e.g., soil) in the confinement.
- B. Fe deficiency:
 - Characterized by pale mucous membranes (around eyes, ears, nose & mouth).

- 2) Slow growth, rough hair coat, wrinkled skin, and may be listless.
- 3) Labored breathing or "thumps" (spasmodic jerking of the diaphragm muscles), and sudden death from anoxia.
- 4) More susceptible to infectious diseases.
- C. Hb or hematocrit levels The best index of the Fe status in pigs:

Item	Normal	Anemic
Hb, g/100 mL Hematocrit, % RBC	12	5
Hematocrit, % RBC	35	17

- D. Prevention of baby pig anemia:
 - 1) Treatment of sows with oral or injectable Fe during gestation:
 - Injection of 22 mg Fe-dextran/kg BW (divided among 5 injections at d 40, 45, 50, 55 & 60 of gestation): (Ducsay et al., 1984. J. Anim. Sci. 59:1303)

Item	Control	Treated
Fetal liver:		
Fe, mg/g DM	1.3	1.2
Total Fe, mg	3.7	3.5
Placenta:		
Uteroferrin, mg/g	1.6	2.4
Uteroferrin, mg	287	427
Allantoic:		
Fe, μ g/mL	5	7
Fe, mg	204	1,327

• No appreciable effect on body stores of newborn pigs!

2) Treatment of sows with Fe during lactation:

Treatment	Birth	Wk 1	Wk 3
None	9.2	7.7	5.9
Pigs injected	9.0	9.3	9.1
Sows fed 700 ppm Fe	9.6	8.4	8.9

• Hemoglobin levels in young pigs (g/100 mL): (Univ. of Kentucky data)

• No effect on the Fe content of milk!

3) Thus, limited placental & mammary transfer of Fe in pigs, and it is a common practice to inject pigs with 100-150 mg of Fe as Fe-dextran or Fe-dextrin at 1-3 days of age.

5. Iron Requirements/Supplementation

A. Requirements:

Animal	mg/kg
Poultry (NRC, 1994):	
Immature chickens	56-80
Laying hens	38-56
Broilers	80
Turkeys	50-80
Swine (NRC, 1998):	
3-120 kg	40-100
Sows/boars	80
Horses (NRC, 1989; DM)	40-50
Fish (NRC, 1993):	
Channel catfish	30
Rainbow trout	60
Pacific salmon	Not tested
Common carp	150
Tilapia	Not tested
Beef cattle	50
Dairy cattle:	
Calf starter & milk replacer	100
All other classes	50
Humans (mg/d; RDA, 1989):	
Children, < 10 yr	6-10
Males, > 11 yr	10-12
Females, 11- 50 yr	15
Females, 50+ yr	10
Pregnant	30
Lactating	15

B. Bioavailability:

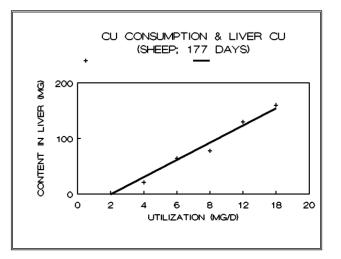
- 1) Ferrous sulfate (FeSO₄) Highly available.
- 2) Ferrous carbonate (FeCO₃) Variable.
- 3) Ferrous oxide (FeO) Poorly available.

- 4) Ferric oxide (Fe_2O_3) Totally unavailable.
- Others such as ferrous ammonia sulfate, ferrous chloride, ferrous fumarate, ferrous gluconate, ferric chloride, ferric citrate, ferric choline citrate & ferric sulfate are available, but not commonly used!

6. Fe Toxicity

- A. Excess Fe (pigs):
 - 1) 600 mg Fe/kg BW Develop toxic signs within 3 h (incoordination, shivering, heavy breathing, convulsion, diarrhea, etc.).
 - 2) Injection of > 200 mg Fe/day May increase bacterial growth, thus become susceptible to infections & diarrhea.
- B. Toxicity in general:
 - 1) Chronic Reduced feed intake, growth rate and feed efficiency.
 - 2) Acute Anorexia, diarrhea, hypothermia, shock, metabolic acidosis, vascular congestion of various organs & death.
- C. Maximum tolerable levels 500 ppm for sheep, 1,000 ppm for cattle & poultry, and 3,000 ppm for swine.

COPPER

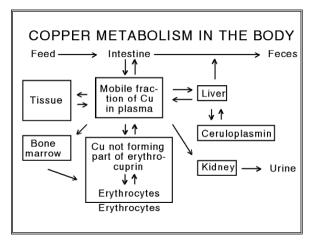

1. Introduction

- A. General:
 - 1) Copper played significant roles in the civilization since the Stone Age e.g., from crude hammered artifacts (dating back to $\approx 6,000$ B.C.) to today's electrical uses.
 - 2) Can form more than 200 minerals, but Cu is mainly found as sulphide ores.
 - 3) The importance of Cu in animals was provided by Hart et al. (1928. J. Biol. Chem. 77:797), who worked with anemic, milk-fed rats:
 - a) Anemia was not corrected by a Fe-supplementation alone or by a liver-extract alone.
 - b) Feeding both resulted in a marked elevation in the Hb level and packed cell volume.
 - c) A bluish tinge of ashed-liver preparation was a clue to its Cu content, and prompted simultaneous Cu & Fe supplementation.
 - 4) Subsequently, the role of Cu demonstrated in:
 - a) Enzootic ataxia (swayback) of lambs.
 - b) Bovine falling disease.

- c) Aortic rupture in rabbits, swine, guinea pigs & turkeys.
- d) Wool and hair depigmentation.
- e) Bone disorders.
- All these disorders were preventable with a Cu supplementation!
- B. Distribution: (Georgievskii, 1982. In: Georgievskii et al., 1982)
 - 1) Cu contents in tissues & organs of farm animals:

Tissue	$\mu g/100 \text{ g}$ (wet tissue)
Whole blood	80-120
Liver	800-10,000
Spleen	120-1,200
Kidneys	200-400
Heart	300-400
Skeletal muscle	200-300
Brain	50-530
Bones	370-4,000

- 2) Variations in the content:
 - a) Skeletal muscle, heart, endocrine glands and kidneys relatively independent of diets.
 - b) Liver, spleen, brain and bones strongly dependent on diets (especially true for the liver!).
 - Example (mammals) 800 to 10,000 µg/100 g (wet wt) in livers & 370 to 4,000 µg/100 g (wet wt) in bones.



- c) Ruminants seem to have much higher concentrations of Cu in the liver vs nonruminants a reflection of greater requirements for Cu?
 - (1) e.g., normal concentrations are 100-400 ppm (DM basis) in ruminants vs. 10-50 ppm in nonruminants.
 - (2) Can reach 1,000-3,000 ppm, and 1,000 ppm may be toxic.

2. Metabolism

- A. Absorption:
 - 1) For Cu to be absorbed, it must be in the cupric state (Cu++)!

- 2) Sites:
 - a) "Adults" Cu is absorbed in all segments, but duodenum > jejunum > ileum. (May be some absorption at the stomach?)
 - b) "Suckling rats" mostly at the ileum.
 - c) "Sheep" a considerable net absorption at the LI.
- 3) Absorption rate:
 - a) Poorly absorbed in most species (generally, < 5-10% of dietary Cu).
 - b) Young animals may absorb 15-30% of intake e.g., in one study with lambs, an apparent availability estimate at 2 wk before weaning was 47%, but it was 8-10% after weaning.
 - c) Higher in deficient-animals, and may be higher in pregnant animals (latter stages of pregnancy).
 - d) Factors interfere with absorption include Ca, Cd, Zn, Fe, S, Mo, etc.
- B. Transport/excretion:
 - 1) "Absorbed" Cu is loosely bound to serum albumin & some amino acids (His, Thr & Glu), and transported throughout the body.
 - 2) CU is taken up quickly by the liver (& other tissues):
 - a) The liver is a major storage site, and also it is a site of ceruloplasmin synthesis.
 - b) "Ceruloplasmin" a carrier of Cu:
 - (1) Contains \approx 0.2-0.4% Cu (6 Cu atoms/molecule).
 - (2) The major circulating form of Cu (\approx 90% of plasma Cu).
 - 3) Excretion:
 - a) A high proportion of ingested Cu appears in the feces (1° unabsorbed Cu).
 - b) Active excretion via bile, and to a lesser extent with other digestive juices.
 - c) Some excretion in the urine & milk.
 - d) Also, small amounts in the sweat & menstrual flow.

- C. Summary of Cu metabolism: (Adapted & redrawn from Georgievskii, 1982. In: Georgievskii et al., 1982)
- 3. Deficiency/Functions

- Several enzymes are known to contain Cu, and are very sensitive to Cu depletion e.g., Ceruloplasmin, lysyl oxidase, cytochrome C oxidase, superoxide dismutase, tyrosinase, uricase, dopamine beta hydroxylase, amine oxidases, ceramide galactosyl transferase, prostaglandin reductase, etc.
- A. Anemia:
 - 1) Cu deficiency can result in a poor iron mobilization, abnormal hemopoiesis, etc., .: Cu is essential for the blood formation.
 - 2) Cu enhances the transport of Fe, and also catalyzes incorporation of Fe into Hb:
 - "Ceruloplasmin" (ferrioxidase) oxidizes Fe from ferrous to ferric state, which in turn can be bound to transferrin.
 - 3) Assists a maturation of erythrocytes.
- B. Abnormal bone development:
 - 1) A Cu deficiency can result in a low osteoblastic activity, which in turn results in "bowing" of legs, spontaneous fractures, etc.
 - 2) Cu is involved in the synthesis of collagen (& elastin) via serving as a component of lysyl oxidase:
 - a) Lys to allysine → desmosine & isodesmosine → cross-linking of collagen in the bone.
 - b) Also, "cross-linkages" can provide the structural rigidity & elasticity to connective tissues.
- C. Cardiac and vascular disorders:
 - e.g., aortic rupture in turkeys & "falling disease" in cattle (heart failure, atrophy of myocardium, etc.).
 - 1) Lysyl oxidase is involved in the synthesis of elastin (cross-linking).
 - 2) Ceruloplasmin has an antioxidative activity, ~ may inhibit peroxidation?
 - 3) Cu is a component of superoxide dismutase (convert superoxide to hydrogen peroxide + oxygen), thus, may protect the circulatory system!
- D. Abnormal pigmentation & keratinization of hair & wool:
 - 1) Pigmentation:
 - a) A loss or lack of pigmentation due to \downarrow activity of tyrosinase, thus lack of melanin.
 - b) Tyrosinase is involved in the conversion of Tyr to dopa (dihydroxy-Phe), and then dopa is converted to melanin.

- 2) Impaired keratinization:
 - a) Characteristics of wool (e.g., crimp) depend on disulfide groups for cross-linkages.
 - b) Cu is required for the formation or incorporation of disulfide groups in the process of keratin synthesis.
- E. Others:
 - 1) Disorders in the central nervous system [e.g., swayback (enzootic ataxia) of lambs] probably the results of ↓ cytochrome oxidase activity.
 - 2) Reproduction failure (e.g., fetal death & resorption) probably related to red blood cell and connective tissue formations during the early embryonic development.
 - 3) Impaired immune response (e.g., formation of T & B cells, neutrophils & macrophages) probably via superoxide dismutase (Cu-, Zn- & Mn-dependent enzyme), and Cu's role in the microbial system of phagocytes.

4. Some Cu Metabolism Disorders

- A. Menke's syndrome:
 - 1) X-linked, autosomal recessive disease that affects male infants.
 - 2) Arises from malabsorption of Cu (: Cu accumulation in the gut mucosa), and most of the small amount of Cu absorbed accumulates in the kidney.
 - 3) Severe vascular, skeletal and CNS abnormalities presumably due to low activity of Cu-dependent enzymes death before age of 12 mo!
- B. Wilson's disease:
 - 1) X-linked, autosomal recessive defect.
 - 2) Accumulation of excessive Cu, first in the liver & then in the brain, kidneys, eyes, erythrocytes & other tissues \rightarrow pathological changes!
 - 3) Ceruloplasmin is absent in plasma of about 25% of patients, and reduced levels in another 70% of patients.
 - 4) Symptoms:
 - a) Never appear before 6 yr of age.
 - b) Nonspecific signs, : often mistaken for others (hepatitis, cirrhosis, etc.).
 - c) Signs include injuries to the liver & scarring of tissues (not fatal), tremors, clumsiness, rigidity, slurring of speech, drooling, difficulty in gait/coordination, seizures, behavioral changes & psychosis.
 - 5) "Treatment" D-penicillamine can metabolize Cu from tissues & promotes its excretion via the urine, thus effective. (Also, Zn supplementation may be effective.)

5. Requirements/Toxicity

A. Requirements:

Animal	mg/kg or others		
Poultry (NRC, 1984):			
Immature chickens	4-5		
Laying hens	?		
Broilers	8		
Turkeys	6-8		
Swine (NRC, 1998):			
Growing	3-6		
Adults	5		
Horses (NRC, 1989; DM)	10		
Fish (NRC, 1993):			
Channel catfish	5		
Rainbow trout & common carp	3		
Others	Not tested or determined		
Dairy cattle	10		
Beef cattle	8		
Humans	Not established		

B. Toxicity:

- 1) Signs include loss of appetite, ↑ thirst, apathy, ↑ breathing rate, intensified heart beat, jaundice, hemolysis, necrosis of liver & death.
- 2) Maximum tolerable levels:

Sheep	25 ppm
Cattle	100 ppm
Chickens & turkeys	300 ppm
Rats	1,000 ppm
Swine	250 ppm
Trout	100 ppb
Lobsters, crayfish	15 ppb

6. The Use of Copper as a Growth Stimulant

- A. A high dietary level of Cu (100-250 ppm) has antimicrobial activity, and acts like an antibiotic.
- B. Widely used as a growth promotant for pigs in the U.K. and Europe.
- C. Dietary copper supplementation?
 - 1) Effect of Cu on performance of starter pigs (a summary of seven 7 28-d studies with 4-wk old pigs): (Cromwell, Univ. of Kentucky)

Itm	Cu, ppm:	0	125	250	500
ADG, g G:F .49		245 .52	291 .54	305 .45	236

Animal Nutrition Handbook	Section 10: Circ	Section 10: Circulation			
Liver Cu, ppm	23	24	191	349	

2) The most effective supplementation seems to be 250 ppm Cu.

D. Dietary copper and age of pigs:

1) A summary of 12 starter and 18 grower/finisher studies: (Cromwell. Pers. Comm.)

Item	0	250	% ↑
Starter:			
ADG, g	227	286	26
G:F	.49	.54	9
Grower:			
ADG, g	659	714	6.9
G:F	.36	.37	3.6
Finisher:			
ADG, g	714	736	3.1
G:F	.31	.32	2.5
Liver Cu, ppm (DM)	22	244	

2) Dietary Cu supplementation is the most effective during the starter phase.

E. Sources:

- 1) Copper oxide & sulfide Totally unavailable.
- Copper sulfate Available and most commonly used. (^{II} 2 lb of CuSO₄·5H₂O/ton of diet provide 250 ppm Cu.)
- 3) Copper carbonate/chloride, sequestered Cu & chelated Cu Met Effective, but costly.
- F. Relationship between Cu & Fe:
 - 1) When using 250 ppm Cu, may have to provide ~ 50% more dietary Fe (\geq 150 ppm?).
 - 2) Supplemental Cu and Fe on performance & hematology of weanling pigs: (Dove & Haydon, 1991. J. Anim. Sci. 69:2013)

		5 ppm Cu			250 ppm Cu		
Item	+ Fe, ppm ^a :	100	200	300	100	200	300
Hematocrit, % ^b		37.2	39.9	40.5	39.9	39.3	41.4
Hb, g/dL ^b		10.6	11.2	10.8	11.2	11.3	11.9
Plasma Fe, μ g/d	L^{b}	245	248	233	218	233	241
Gain, g/d ^c		320	360	330	410	400	430
Feed:gain ^c		1.62	1.54	1.65	1.55	1.59	1.59

^aBasal diet contained 169 ppm Fe & added 50, 100, 150, 200, 250 & 300 ppm; ^bCu x Fe interaction, P = 0.05 to 0.06; ^cEffect of Cu, P < 0.01.

- G. Mode of action?
 - 1) Not well defined, but probably similar to the action of antibiotics Unclear, but some suggestions?
 - a) Metabolic effects Direct influences on metabolic processes such as ↓ FA oxidation, ↑ protein synthesis, etc.
 - b) Nutritional effects (cannot separate completely from the metabolic effect):
 - (1) May be ↓ undesirable microbes & ↑ desirable microbes, i.e., ↑ the population of microbes that synthesize vitamins & amino acids.
 - (2) Inducing changes in the GI tract e.g., Thinner wall of the gut, thus may ↑ absorption rate & ↓ energy expenditures.
 - c) Disease controlling effects.
 - 2) Effect of Cu is "additive" to antimicrobial agents.
- H. Some concerns regarding the use of high levels of copper:
 - 1) Toxicity in pigs The optimum level for growth promoting effect & toxicity level are similar!
 - 2) Adverse effects on humans e.g., Consumption of high-Cu liver.
 - 3) Rapid deterioration of galvanized metals (buildings & equipment).
 - 4) Reduced microbial decomposition of wastes in lagoons.
 - 5) Can be an environmental pollutant.